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Geometry of thermodynamics

We have during these lectures seen several geometric structures that are associated
with thermodynamics.

Contact structure A thermodynamic system in equilibrium is a Legendrian submanifold
of a contact manifold.

Metric The Legendrian submanifolds are equipped with a positive definite metric.

Yesterday we saw that the measurement a point in the space V (modelled by a random
vector) gave us Legendrian submanifolds of V × R× V ∗ endowed with a positive
definite metric σ2. This metric was just the first of an infinite set of central moments.

A transformation on V induces a transformation on V × R× V ∗ by the requirement
that it preserves the contact structure. The transformations on V that also preserve σ2

are exactly the affine transformation on V .

In this lecture we will find the scalar differential invariants of Legendrian submanifolds
under the group of affine transformations.



Differential invariants
Scalar differential invariants of geometric structures with respect to a group of
transformations are functions that depend on the parameters of the structure and their
derivatives and whose expressions do not change under the group action.

One example we saw yesterday was the scalar curvature of the metric
g = a(x, y)dx2 + 2b(x, y)dxdy + c(x, y)dy2, which is a differential invariant with
respect to the pseudogroup of local diffeomorphisms. It is given by

Sc = −ayy − 2bxy + cxx
ac− b2

− (−aaycy+2abxcy−ac2x−baxcy+2bayby+baycx−4bbxby+2bbxcx+2caxby−caxcx−ca2y)

2(ac−b2)2
.

If the group action signifies some arbitrary choice in our description of a physical
system, the invariants are those quantities that are independent of this choice: They
are the quantities of the underlying physics. This is illustrated well by the scalar
curvature which in general relativity appears as a quantity that all observers agree
upon.



A simple example
Let us illustrate the concept of differential invariants using one of the simplest possible
examples.

The Euclidean plane is the space R2(x, y) endowed with the group of rigid motions:(
x
y

)
7→
(

cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
a
b

)

Let us consider the set C∞(R2) of smooth functions on this space.

The transformation group induces an action on functions on the Euclidean plane, and
two functions f and g can be considered to be equivalent if there exists a Euclidean
transformation ϕ so that f ◦ ϕ = g.

In order to determine when two functions are equivalent, we will find a set of invariant
quantities, i.e. quantities that are not affected by the transformation.



Group-action on Taylor polynomials
The transformation group acts on the second-degree Taylor polynomial of f ∈ C∞(R2),

[f ]2(x0,y0) = a0 + a1(x− x0) + a2(y − y0) +
a11

2
(x− x0)

2 + a12(x− x0)(y − y0) +
a22

2
(y − y0)

2.

The coefficients a0, a1, ..., a22 depend on the point (x0, y0). Using a translation from our
group, we can transform the Taylor polynomial to

[f ]2(0,0) = a0 + a1x+ a2y +
a11
2
x2 + a12xy +

a22
2
y2.

The only thing we can do now (without undoing the previous step) is to apply a rotation. We
use it to remove the coefficient of x. Let(

x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x̃
ỹ

)
=

1√
a21 + a22

(
a2 a1
−a1 a2

)(
x̃
ỹ

)
.

Then, we get the Taylor polynomial

a0 +
√

a2
1 + a2

2ỹ +
a2
2a11−2a1a2a12+a2

1a22

a2
1+a2

2

x̃2

2
+

(a2
2−a2

1)a12−a1a2(a22−a11)

a2
1+a2

2
x̃ỹ +

a2
1a11+2a1a2a12+a2

2a22

a2
1+a2

2

ỹ2

2
.



Extracting invariant functions

Note that a requirement for applying the last rotation was that a2
1 + a2

2 > 0.

The normalized coefficients of our Taylor polynomial,

a0,
√
a2

1 + a2
2,

a2
2a11 − 2a1a2a12 + a2

1a22

a2
1 + a2

2

,

(a2
2 − a2

1)a12 − a1a2(a22 − a11)

a2
1 + a2

2

,
a2

1a11 + 2a1a2a12 + a2
2a22

a2
1 + a2

2

.

can be considered as functions on the space of second-degree Taylor polynomials (the
space of 2-jets). They are invariant.



Extracting invariant functions

Let us use the following invariants:

I0 = a0, I1 = a2
1 + a2

2, I2a = a2
2a11 − 2a1a2a12 + a2

1a22,

I2b = (a2
1 − a2

2)a12 + a1a2(a22 − a11), I2c = a2
1a11 + 2a1a2a12 + a2

2a22

Since any algebraic combination of the invariants is invariant, they generate an
algebra.

Recal that a0, a1, a2, a11, ..., a22 depend on the point (x0, y0), when f is fixed. In fact,
we have

a0 = f(x0, y0), a1 = fx(x0, y0), a2 = fy(x0, y0), ..., a22 = fyy(x0, y0).

The invariants depend on both the function f , and on (x0, y0): If f is fixed, the

invariants are functions on R2. Let If0 , ..., I
f
2c denote these functions on R2.



Equivalence of functions
If two functions f1 and f2 are related by a Euclidean transformation, the functions If10

and If20 must be equivalent, and similarly for the other invariants.

For a generic function f , the functions If0 (x, y), If1 (x, y) are independent functions of

(x, y): dIf0 ∧ dI
f
1 6= 0. Thus If0 and If1 can be used as (local) coordinates on R2. The

functions If2a, I
f
2b, I

f
2c can then be written in terms If0 , I

f
1 :

If2a = α(If1 , I
f
2 ), If2b = β(If1 , I

f
2 ), If2c = γ(If1 , I

f
2 )

The functions α, β, γ are independent of the choice of representative in the equivalence
class of f : If f1 and f2 are locally equivalent on a domain on which If10 , If11 and

If20 , If21 serve as coordinates, they will determine the same functions α, β, γ.

Exercise: Consider the functions f1(x, y) = x2 + y and f2(x, y) = x2 − 2x+ 1 + y.
Show that we have, for both of them, the relations

I2a = 2, I2
2b = 4(I1 − 1), I2c = 2(I1 − 1).



Signature manifolds

Consider the two-dimensional submanifold in R5 parametrized by

(x, y) 7→
(
If0 (x, y), If1 (x, y), If2a(x, y), If2b(x, y), If2c(x, y)

)
.

We call it the signature manifold of f .

Equivalent functions give rise to the same signature manifolds. Conversely, if the
invariants generate the whole algebra of invariants, then the signature manifold will
also completely distinguish inequivalent functions. In this sense, the signature manifold
solves the equivalence problem.

Important: Not all two-dimensional manifolds in R5 are realized as the signature of
some function f , only those that satisfy a certain system of differential equations: The
quotient PDE.



The differential algebra of differential invariants

Is it sufficient to consider only second-degree Taylor polynomials?

If we tried to normalize the third-degree Taylor polynomial of f , we would get four
additional invariants, etc. It turns out that these can be generated by the previous
ones. Not by algebraic operations, but by derivations.

Consider again the invariants restricted to the function f :

a = If0 , b = If1 , g = If2a, h = If2b, k = If2c

Assume that da ∧ db 6= 0. Then a, b can be used as coordinates on R2. Now we can
differentiate g, h, k with respect to a and b to produce six new invariants. By
continuing this, we can generate all invariants.



The quotient PDE

By differentiating g, h, k, we get 6 new invariants, but not all of these are independent.
More concretely, we have

b2ha − 2bhkb + 2bkhb + (g + k)h = 0,

b2ga + 2bkgb − 2bhhb + g2 − 3gk + 4h2 = 0.

Notice that this holds for the invariants restricted to the function f . But they are
actually independent of f .

We call this the quotient PDE. This is the PDE that the signature manifold must
satisfy.



Measurements
Consider a random vector

X : (Ω,A, µ0)→ V

where Ω is the sample space, A is the σ-algebra of events, and µ0 is a probability
measure.

We interpret X as a measurement of x0 ∈ V if

Eµ0(X) =

∫
Ω
Xdµ0 = x0.

Let us choose an affine frame such that x0 = 0. The measurement of a vector x ∈ V
is given by a probability measure µ different from µ0, satisfying Eµ(X) =

∫
ΩXdµ = x.

Assuming that µ is absolutely continuous with respect to µ0, we have by the
Radon-Nikodym theorem dµ = ρdµ0.

Notice that Eµ behaves well under affine transformations:

Eµ(AX +B) = AEµ(X) +B.



Constraints on ρ

We require ∫
Ω
ρdµ0 = 1, Eµ(X) =

∫
Ω
ρXdµ0 = x.

This is an underdetermined set of conditions on ρ. We define the information gain

I(µ, µ0) =

∫
Ω
ρ ln ρdµ0,

and require ρ to minimize I(µ, µ0). Jaynes noted that this (or more precisely the the
maximation of entropy) is “the only unbiased assignment we can make”. The three
conditions imply

ρ =
1

Z(λ)
e〈λ,X〉

with λ ∈ V ∗. Here λ is the (multidimensional) Lagrange multiplier for the proposed
optimization problem. Z(λ) =

∫
Ω e
〈λ,X〉dµ0 is called the partition function.

Choosing basis on V gives us coordinates xi on V , and dual coordinates λi on V ∗.



Symplectic and contact structures
If we define H(λ) = − lnZ(λ), we get

Hλi(λ) = − 1

Z(λ)
Zλi(λ) = −

∫
Ω
Xi e

〈λ,X〉

Z(λ)
dµ0 = −xi.

These n equations define an n-dimensional submanifold L ⊂ V × V ∗ which is
Lagrangian with respect to symplectic form dxi ∧ dλi. Restricting I(µ, µ0) to L gives

I(λ) = H(λ) + 〈λ, x〉 = H(λ)− λiHλi(λ).

Or if we can solve Hλi = −xi for λ(x), we may write

I(x) = H(λ(x)) + 〈λ(x), x〉.

And we notice that Ixi = λi. This determines a Legendrian submanifold

L̃ = {u = I(x), λi = Ixi(x)} ⊂ V × R× V ∗

with respect to the contact form du− λidxi.



Invariant symmetric tensors

Central moments with respect to the extremal measure ρ corresponding to λ give
additional structure on Legendrian submanifolds.

We write X = Xidλi. The kth moment corresponds to a symmetric k-form:

mk =

∫
Ω
X⊗kρdµ0 =

(∫
Ω
Xi1 · · ·Xikρdµ0

)
dλi1 ⊗ · · · ⊗ dλik

=
Zλi1 ···λik

Z
dλi1 ⊗ · · · ⊗ dλik

These are GL(V )-invariant, but not invariant under translations. The kth central
moment (i.e. the moment of X −m1) is given by

σk =

k∑
i=0

(
k

i

)
mi ·m(k−i)

1 .

They define Aff-invariant symmetric k-forms on Lagrangian manifolds, for k ≥ 2.



Invariant symmetric tensors

If we use λi as coordinates on L (or L̃), we have

σ2 = −Hλiλjdλi ⊗ dλj = xiλjdλi ⊗ dλj .

In the coordinates xi it is given by

σ2 = uxixjdx
i ⊗ dxj .

All the central moments are invariant under the group of affine transformations on V .
We will use them to find scalar differential invariants. In the rest of this lecture, we will
work with the Lagrangian submanifold L ⊂ V × V ∗. The only invariant we lose with
this simplification is the one of order 0: u.



From invariant tensors to scalar invariants

We find an invariant frame on L and write the central moments in this frame. Then
the coefficients are scalar invariants.

First we notice that α1 = λidx
i is invariant (since both du and du− λidxi are). If we

use coordinates λi on L, we may write α1 = xiλjλidλj .

I σ2 is nondegenerate, so we may construct a (second-order) invariant vector field
v1 = σ−1

2 (α1).

I σ1,3 = iv1σ3 is a symmetric 2-form. We use σ2 to turn σ1,3 into an operator
A : T → T .

I For k ≤ n, let vi = Ai−1(v1). They are independent on a generic Lagrangian
manifold, and {v1, ..., vk} is a frame of invariant vector fields (of third order).

I The functions σk(vi1 , ..., vik) are scalar differential invariants.

There is only one second-order invariant: σ2(v1, v1) = λiλjx
i
λj

. Note that all the
invariants are rational functions.



The field of rational scalar differential invariants

Theorem
The set {σj(vi1 , ..., vik) | j = 2, ..., k} contains a transcendence basis for the field of
rational differential invariants of order k.

We have
iviσ2 = ivi−1iv1σ3,

because of the way the frame was constructed. It implies relations

σ3(v1, vi, vj) = σ3(v1, vi+1, vj−1).

In two dimensions this holds trivially, since σ3 is symmetric. In three dimensions we get
the additional relation

σ3(v1, v1, v3) = σ3(v1, v2, v2).

The number of algebraically independent differential invariants of order k is
summarized by the Hilbert function Hk:

H1 = 0, H2 = 1, H3 = n3+11n−6
6 , Hk =

(
n+k−1

k

)



The differential algebra

The vector fields vi are derivations that act on the field of differential invariants and
makes it a differential algebra.

Theorem
The differential algebra of differential invariants is generated by v1, ..., vk, and the
scalar invariants σ2(v1, v1), σ3(vi, vj , vk) and σ4(vi, vj , vk, vl).

If dimV = 2, the third-order invariants are sufficient to generate the algebra. We
simplify notation:

I21 = σ2(v1, v1), I22 = σ2(v1, v2), I23 = σ2(v2, v2), I31 = σ3(v1, v1, v1),

I32 = σ3(v1, v1, v2), I33 = σ3(v1, v2, v2), I34 = σ3(v2, v2, v2)

And define

J1 = I21I33−I22I32
I21I23−I222

, J2 = I22I33−I23I32
I21I23−I222

, J3 = I21I34−I22I33
I21I23−I222

, J4 = I22I34−I23I33
I21I23−I222

.

They can be expressed in terms of I21, I33, I34, v1(I21) and v2(I21).



Generators and syzygies in 2D

Theorem
The differential algebra of scalar differential invariants is generated by the invariant
derivations v1 and v2, and the scalar differential invariants I21, I33 and I34. The
differential syzygies are generated by

3J4 v1(v1(I21))− (2J1 + 2J2 + 3J3) v2(v1(I21)) + J1 v2(v2(I21))− v2(I33) + v1(I34)

−(4J2 + 6J4) v1(I21) + (4J1 + 6J2 + 6J3) v2(I21)− J2I33 + (4 + 2J1)I34 + 8J2I21 = 0,

−4J2 v1(v1(I21)) + (4J1 − 2) v2(v1(I21)) + v2(v2(I21))− 2 v1(I33) + I34 − 4J1I33

+(8J1 − 2J2
1 + 6J2) v1(I21) + (4J2 − 12J1 + 4) v2(I21) + (4J2

1 + 2J1J2 + 4J2 − 16J1)I21 = 0.



Application to thermodynamics

Let us use the following variables:

I e = x1 - internal energy

I v = x2 - volume

I s = −I + C - entropy

I T = −1/λ1 - temperature

I p = λ2/λ1 - pressure

θ = du− λ1dx
1 − λ2dx

2 = −(ds− 1

T
de− p

T
dv)

I By considering a measurement of (e, v), we identify the fundamental
thermodynamic relation with the contact form arising in the context of
measurements.

I A thermodynamic system in equilibrium corresponds to a Legendrian submanifold
of (V × R× V ∗, θ), or a Lagrangian submanifold of (V × V ∗, dθ).



Scalar differential invariants
Lagrangian submanifolds are given by two functions e(T, p), v(T, p), satisfying
TvT + pvp + ep = 0.

Theorem
The algebra of scalar differential invariants is generated by the following differential
invariants and invariant derivations:

I2 = pvT + eT , I31 = ∇1(I2), I32 =
(eT vTT − eTT vT )2T 3

epvT − eT vp
,

I33 =

(
2TvT I2vTT + I22vTp + vT I31 + v2T I2

)
T

(epvT − eT vp)2
,

I34 =
T 2(3T 2v2

T I2vTT+3TvT I2
2vTp+I3

2vpp+Tv3
T I31+4Tv3

T I2+3vT vpI
2
2)(eT vTT−eTT vT )

(epvT−eT vp)2
,

∇1 = −TDT , ∇2 =
TvTDT + (eT + pvT )Dp

(eT vTT − eTT vT )T



Heat capacity

The concept of heat capacity plays an important role in thermodynamics. It is
commonly defined as

C = lim
∆T→0

Q

∆T
,

where Q is the heat added to the system. Keeping the pressure p fixed gives the “heat
capacity at constant pressure”

Cp = eT + pvT

which is the simplest of our differential invariant.

Example. Gases with constant heat capacity:

e(T, p) = f1(p)T − f ′2(p)p2, v(T, p) =
(Cp − f1(p))T

p
+ f ′2(p)p+ f2(p)



Differential invariants for a subgroup appearing in fluid dynamics

Inspired by [Duyunova et. al. 2017] we consider the group action given by
(e, v) 7→ (Ae+ Cv,Bv) for A,B ∈ R \ {0}, C ∈ R which appears in the study of
fluids. It is a subgroup of the group of affine transformations, meaning that there are
more invariants.

Theorem
The following is a transcendence basis for the field of rational differential invariants of
order 2:

e+ pv

T
,

TvT
v
, Cp = eT + pvT , Cv = eT − ep

vT
vp

We note that e+ pv is the enthalpy, vT /v is the coefficient of thermal expansion, Cp is
the heat capacity at constant pressure and Cv is the heat capacity at constant volume.



Differential invariants for a subgroup appearing in fluid dynamics

Theorem
The differential algebra of differential invariants is generated by

J1 =
e+ pv

T
, J2 =

Tvp
v2

, ∇̃1 = TDT , ∇̃2 =
T

v
Dp.

These generators are related by the differential syzygy

∇̃1(J2) + ∇̃2(∇̃2(J1))− J2∇̃2(J1) = 0.

Example: The thermodynamic systems for which J1 is constant are given by

e = (C1 − f(p))T, pv = f(p)T.
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