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Metrics in thermodynamics

The contact geometry of thermodynamics seems to have been understood to a great
extent by Gibbs 150 years ago. More recently others have introduced other geometric
constructions to thermodynamics, in particular Riemannian metrics.

For example, Ruppeiner introduced in 1979 a metric on the 2-dimensional space of
states, related it to fluctuation theory, and studied its curvature.

In fact, using the principle of maximal entropy (or minimal information gain), both the
contact structure (see [Jaynes 1957]) and the metric (see [Mrugala 1990]) can be given
statistical interpretations.



Riemannian metrics

Let us introduce a new type of structure on manifolds, namely Riemannian metrics.

Definition
A Riemannian metric g on a smooth manifold M is a collection of positive definite
symmetric bilinear maps gp : TpM × TpM →M that depend smoothly on the point
p ∈M .

If x1, ..., xn are coordinates on M , we can write g as

g = gij(x)dxi ⊗ dxj

where the matrix [gij(x)] is symmetric and positive definite at each point. Recall that
a matrix A is symmetric if A = AT and that a symmetric matrix is positive definite if
vTAv > 0 for every nonzero column vector v. If X = ai∂xi and Y = bi∂yi , we have

g(X,Y ) = gija
ibj .



The Euclidean metric

Consider R2 with the metric g = dx2 + dy2. If X = a1∂x + a2∂y and
Y = b1∂x + b2∂y, then

g(X,Y ) = a1b1 + a2b2.

We can also compute lengths of vectors:

‖X‖2 = g(X,X) = a2
1 + a2

2.

Note: By dxidxj we mean 1
2(dxi ⊗ dxj + dxj ⊗ dxi). In particular

dx2 = dxdx = dx⊗ dx. We have dxi ⊗ dxj(X,Y ) = dxi(X)dxj(Y ).



Surfaces in Euclidean space
The first examples of nontrivial Riemannian manifolds were probably surfaces in
Euclidean space.

Consider the space R3 with the Euclidean metric g = dx2 + dy2 + dz2, and let S ⊂ R3

be a surface given by a function z = f(x, y). Then we can take x and y to be
coordinates on S. The metric “restricted to S” becomes

g̃ = dx2 + dy2 + df(x, y)2

= dx2 + dy2 + (fxdx+ fydy)2

= (1 + f2
x)dx2 + (1 + f2

y )dy2 + 2fxfydxdy.

Examples:

I Let f(x, y) = C. Then g̃ = dx2 + dy2.

I Let f(x, y) = h(x). Then g̃ = (1 + h2
x)dx2 + dy2.

I Let f(x, y) =
√

1− x2 − y2. Then g̃ = (1−y2)dx2+2xydxdy+(1−x2)dy2

1−x2−y2 .



The curvature tensor
The previous examples were curved 2-dimensional manifolds in 3-dimensional space.
The Riemannian metric g on a manifold M lets us talk about “curved” manifolds
without embedding them into a higher-dimensional space.

On each Riemannian manifold (M, g) there exists a tensor called the curvature tensor.
It is a 4-tensor

R = Rijkldx
i ⊗ dxj ⊗ dxk ⊗ dxl.

The coefficients Rijkl can be given in terms of gij (here gij denotes the matrix inverse
to gij):

Rijkl =
1

2

∂

∂xk

(
∂gij
∂xl

+
∂glj
∂xi
− ∂gil
∂xj

)
− 1

2

∂

∂xl

(
∂gij
∂xk

+
∂gkj
∂xi

− ∂gik
∂xj

)
+

1

4
ghm

(
∂gim
∂xk

+
∂gkm
∂xi

− ∂gik
∂xm

)(
∂gjh
∂xl

+
∂glh
∂xj

−
∂gjl
∂xh

)
− 1

4
ghm

(
∂gim
∂xl

+
∂glm
∂xi

− ∂gil
∂xm

)(
∂gjh
∂xk

+
∂gkh
∂xj

−
∂gjk
∂xh

)



The scalar curvature on 2-dimensional manifolds

For a 2-dimensional manifold the only nonvanishing part of the curvature tensor is

R1212 = −R2112 = −R1221 = R2112.

From the curvature tensor, we can generate a scalar function, called the scalar
curvature. If g = adx2 + 2bdxdy + cdy2, then the scalar curvature is given by

Sc = Rijklg
ikgjl = −ayy − 2bxy + cxx

ac− b2

− (−aaycy+2abxcy−ac2x−baxcy+2bayby+baycx−4bbxby+2bbxcx+2caxby−caxcx−ca2y)

2(ac−b2)2

In two dimensions, the scalar curvature is essentially the only invariant scalar quantity
that depends a, b, c and their first- and second-order partial derivatives. By “invariant”
we mean invariant under coordinate transformations (local diffeomorphisms): If we
change coordinates, the functions a, b, c change but the expression of Sc in terms of
a, b, c and their derivatives remains the same.



The scalar curvature on submanifolds in Euclidean space
In the case when

g = (1 + f2
x)dx2 + 2fxfydxdy + (1 + f2

y )dy2

the scalar curvature simplifies a lot:

Sc = 2
fxxfyy − f2

xy

(f2
x + f2

y + 1)2

This is called (up to a constant factor) the Gaussian curvature of the surface. Let us
compute it for the examples we considered earlier.
Examples:

I Let f(x, y) = C. Then g̃ = dx2 + dy2 and Sc = 0.

I Let f(x, y) = h(x). Then g̃ = (1 + h2
x)dx2 + dy2 and Sc = 0.

I Let f(x, y) =
√
r2 − x2 − y2. Then g̃ = (r2−y2)dx2+2xydxdy+(r2−x2)dy2

r2−x2−y2 and

Sc = 2
r2

.



A metric on thermodynamic systems

Thermodynamic systems (in the form of Legendrian submanifolds in R5(T, p, e, v, s))
can also be equipped with a metric. The one we will focus on here is given by

g = −(see(e, v)de2 + 2sev(e, v)dedv + svv(e, v)dv2)

in (e, v)-coordinates (see for example [Mrugala et. al. 1990] or [Lychagin 2020]). It is
required to be positive definite.

G. Ruppeiner relates this metric to the variance of fluctuations ([Ruppeiner 1979]) and
investigated the physical meaning of the scalar curvature and computed it for several
thermodynamic systems (see [Ruppeiner 1995]).



A metric on the ideal gas

For an ideal gas, given by pv = aT , e = cT and s = c ln e+ a ln v + s0, the metric is
given by

g =
c

e2
de2 +

a

v2
dv2.

The scalar curvature Sc for this metric is 0. This means that there exists coordinates
x(e, v), y(e, v) such that g = dx2 + dy2.

From the intrinsic viewpoint (allowing arbitrary coordinate changes on L) this would
mean that the ideal gas is the unique “flat” thermodynamic system.



Some concepts from statistics
The following is based on [Lychagin 2020] (see also [Mrugala et. al. 1990] and
[Lychagin, Roop 2021]). First we need some statistical notions.

Let Ω be a set which we call the sample space. A σ-algebra A on Ω is a collection of
subsets of Ω such that

I Ω ∈ A,

I Ω \ S ∈ A for each S ∈ A,

I ∪iSi ∈ A for all countable subsets {Si} ⊂ A.

The σ-algebra lets us define a measure on Ω, and pair (Ω,A) is called a measurable
space. A measure µ is a map µ : A → [0,∞) with the properties

I µ(∅) = 0,

I µ(∪iSi) =
∑

i µ(Si) for all countable subsets {Si} ⊂ A such that Si ∩ Sj = ∅ for
every i 6= j.

The triple (Ω,A, µ) is called a measure space. If µ(Ω) = 1, we call µ a probability
measure and (Ω,A, µ) a probability space.



More statistics
For the space V = Rn we can define the (Borel) σ-algebra B as the smallest σ-algebra
which contains all open sets of V . Then a random vector is a map

X : (Ω,A, µ)→ V,

satisfying X−1(U) ∈ A for all sets U ∈ B and

X−1(U1 ∪ U1) = X−1(U1) ∪X−1(U2),

X−1(U1 ∩ U1) = X−1(U1) ∩X−1(U2),

X−1(V \ U) = Ω \X−1(U).

Then a measure on V is induced by the formula

X∗(µ)(U) = µ(X−1(U)).

In this lecture all measures will be probability measures, and measure spaces will be
probability spaces.



Measurements
Consider a random vector

X : (Ω,A, µ0)→ V

where Ω is the sample space, A is the σ-algebra of events, and µ0 is a probability
measure.

We interpret X as a measurement of x0 ∈ V if

Eµ0(X) =

∫
Ω
Xdµ0 = x0.

Let us choose an affine frame such that x0 = 0. The measurement of a vector x ∈ V
is given by a probability measure µ different from µ0, satisfying Eµ(X) =

∫
ΩXdµ = x.

Assuming that µ is absolutely continuous with respect to µ0, we have by the
Radon-Nikodym theorem dµ = ρdµ0.

Notice that Eµ behaves well under affine transformations:

Eµ(AX +B) = AEµ(X) +B.



Constraints on ρ

We require ∫
Ω
ρdµ0 = 1, Eµ(X) =

∫
Ω
ρXdµ0 = x.

This is an underdetermined set of conditions on ρ. We define the information gain

I(µ, µ0) =

∫
Ω
ρ ln ρdµ0,

and require ρ to minimize I(µ, µ0). Jaynes noted that this (or more precisely the the
maximation of entropy) is “the only unbiased assignment we can make”. The three
conditions imply

ρ =
1

Z(λ)
e〈λ,X〉

with λ ∈ V ∗. Here λ is the (multidimensional) Lagrange multiplier for the proposed
optimization problem. Z(λ) =

∫
Ω e
〈λ,X〉dµ0 is called the partition function.

Choosing basis on V gives us coordinates xi on V , and dual coordinates λi on V ∗.



Symplectic and contact structures
If we define H(λ) = − lnZ(λ), we get

Hλi(λ) = − 1

Z(λ)
Zλi(λ) = −

∫
Ω
Xi e

〈λ,X〉

Z(λ)
dµ0 = −xi.

These n equations define an n-dimensional submanifold L ⊂ V × V ∗ which is
Lagrangian with respect to symplectic form dxi ∧ dλi. Restricting I(µ, µ0) to L gives

I(λ) = H(λ) + 〈λ, x〉 = H(λ)− λiHλi(λ).

Or if we can solve Hλi = −xi for λ(x), we may write

I(x) = H(λ(x)) + 〈λ(x), x〉.

And we notice that Ixi = λi. This determines a Legendrian submanifold

L̃ = {u = I(x), λi = Ixi(x)} ⊂ V × R× V ∗

with respect to the contact form du− λidxi.



Contact and symplectic structures

The measurement of a point in V leads us to consider Legendrian submanifolds in the
contact space V ×R× V ∗(xi, u, λj) with contact structure given by du− λidxi. They
are locally given by u = I(x), λi = Ixi(x).

It may be convenient to remove information gain from the picture, and consider only
Lagrangian submanifolds in (V × V ∗, dxi ∧ dλi). Locally they are given by n functions
xi(λ), satisfying xiλj = xjλi (similar to the Maxwell relations).



Example

In classical thermodynamics the fundamental thermodynamic relation is given by

de− Tds+ pdv = 0 or − ds− (−T−1)de− (−pT−1)dv = 0.

Geometrically this means that systems in thermodynamic equilibrium are Legendrian
submanifolds in a five-dimensional contact manifold. We can connect this to the above
discussion by setting du = −ds, x1 = e, x2 = v, λ1 = −T−1, λ2 = −pT−1. We notice
that we can identify the thermodynamic identity with du− λidxi if we “measure”
(e, v) ∈ V .



A metric on Legendrian submanifolds

On a Legendrian submanifold L ⊂ V × R× V ∗ (and also on the corresponding
Lagrangian submanifold in ⊂ V × V ∗), we can define a metric σ2. If we use λi as
coordinates on L, we have

σ2 = −Hλiλjdλi ⊗ dλj = xiλjdλi ⊗ dλj .

In coordinates xi it is given by

σ2 = uxixjdx
i ⊗ dxj .

The metric encodes (as we will see soon) the variance of the random vector X with
respect to the extremal measure ρ corresponding to λ. As mentioned, this metric has
received attention in the fields of information geometry and geometric thermodynamics.
For instance, Ruppeiner has suggested a physical meaning of the scalar curvature.



Action by the affine group

I Recall that Eµ0(AX +B) = AEµ0(X) +B.

I Affine transformations preserve the contact and the metric structure, and they are
the only transformations on V that does that.

(x, u, λ) 7→ (Ax+B, u, (A−1)Tλ), A ∈ GL(V ), B ∈ V

Conclusion: The principle of minimal information gain leads us to consider
submanifolds in V × V ∗ × R which are Legendrian with respect to the contact form
du− λidxi. In addition it gives a metric uxixjdx

i ⊗ dxj on Legendrian submanifolds.
The group Aff acts on the space of Legendrian manifolds as the largest group acting
on V that preserves both the contact structure and the metric.

Alternatively, we may consider submanifolds in V × V ∗ which are Lagrangian with
respect to the symplectic form dλi ∧ dxi. The Lagrangian submanifolds come equipped
with a metric xiλjdλi ⊗ dλj . The group Aff acts on the space of Lagrangian
submanifolds.



More invariant symmetric tensors

Central moments (one of which is σ2) gives additional structure on Legendrian
submanifolds.

We write X = Xidλi. The kth moment corresponds to a symmetric k-form:

mk =

∫
Ω
X⊗kρdµ0 =

(∫
Ω
Xi1 · · ·Xikρdµ0

)
dλi1 ⊗ · · · ⊗ dλik

=
Zλi1 ···λik

Z
dλi1 ⊗ · · · ⊗ dλik

These are GL(V )-invariant, but not invariant under translations. The kth central
moment (i.e. the moment of X −m1) is given by

σk =

k∑
i=0

(
k

i

)
mi ·m(k−i)

1 .

They define Aff-invariant symmetric k-forms on Lagrangian manifolds, for k ≥ 2.



To be continued

Tomorrow we will use the central moments to find scalar differential invariants with
respect to Aff. We will see that some of the invariants are well-known physical
quantities.
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