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Introduction

Now we are ready to talk about thermodynamics. This lecture is based on

I R. Hermann, Geometry, Physics, and Systems, Dekker (1973), Chapter 6.

I J.W. Gibbs, Graphical methods in the thermodynamics of fluids, Trans. Conn.
Acad. 1873, II, 309–342.

I D.V. Schroeder, An Introduction to Thermal Physics, Pearson (2000).

The paper by Gibbs is very old, but well worth a read. Hermann made the following
remark in his book:

After much reading on the subject, I would say that Gibbs understood, in
about 1870, the mathematics of thermodynamics - even in its most “modern”
form - better than almost all of the authors who followed him.



Quantities and relations

We will assume that at each state of a thermodynamical system, five quantities are
given:

I v, the volume,

I p, the pressure,

I T , the temperature,

I e, the energy,

I s, the entropy.

We also have some quantities that do not depend on the state, but on the path taken
when passing from one state to another:

I W , the work done,

I Q, the heat received.



The first law
The first law of thermodynamics is a statement about energy conservation. It says that
the change of energy of a system, when passing from one state to another, is equal to
the heat received by the system minus the work done by it.

The infinitesimal version of this statement is often written de = δQ− δW . If we
assume that the work and heat satisfy the equations δW = pdv and δH = Tds, we
obtain

de = Tds− pdv

which the space of states of the system must satisfy. In other words, a thermodynamic
system is a (2-dimensional) Legendrian submanifold of the contact manifold
(R5, θ = de− Tds+ pdv).

Definition (Hermann)

A (simple smooth equilibrium) thermodynamic system is a Legendrian submanifold of
the manifold R5(v, p, T, e, s) equipped with the contact form θ = de− Tds+ pdv.



The ideal gas
Let us look at one of the most famous examples of a Legendrian submanifold in R5.
The ideal gas is given by equations of the form

pv = aT, e = cT.

These equations by themselves do not determine a 2-dimensional submanifold in R5,
since there are only two of them, but by using the contact structure we can determine
the last equation.

From the contact form − 1
T θ = ds− 1

T de−
p
T dv we see that the entropy is given by

se(e, v) =
1

T (e, v)
=
c

e
, sv(e, v) =

p(e, v)

T (e, v)
=
a

v
.

The first equation has solution s(e, v) = c ln e+ C(v) while the other equation implies
that C(v) = a ln v + s0.

s(e, v) = c ln e+ a ln v + s0

This is almost the Sackur-Tetrode equation. However, determining s0 is more difficult.



The ideal gas
It is difficult to draw a 2-dimensional surface situated in a 5-dimensional space. But we
can easily display how three quantities are related, for example by plotting a surface in
R3(p, v, T ). If a = 1, we have pv = T which gives the following surface:

Figure: A plot of the ideal gas in a (p, v, T )-diagram.



The van der Waals gas
Consider an instance of the van der Waals gas1 given by

p =
8T

3v − 1
− 3

v2
, e = 4T − 3

v
.

Then the entropy s(e, v) is a solution to

se(e, v) =
1

T (e, v)
=

4v

ev + 3
, sv(e, v) =

p(e, v)

T (e, v)
=

4(2ev2 − 3v + 3)

v(3v − 1)(ev + 3)
.

Thus

s(e, v) = 4 ln

(
ev + 3

v

)
+

8

3
ln(3v − 1) + s0.

We can also write

s(T, v) = 4 ln(4T ) +
8

3
ln(3v − 1) + s0 = ln

(
T 4(3v − 1)8/3

)
+ s′0.

1See for example arxiv.org/pdf/1402.1205.

https://arxiv.org/pdf/1402.1205.pdf


The van der Waals gas
Let us plot the relation between p, v, T in R3.



Different ways of representing the thermodynamic system

Let L be a Legendrian submanifold of the contact manifold (R5, θ). There are several
different ways to represent it. In particular, one can (at least locally) choose any pair
of the five thermodynamic quantities as coordinates on L.

For example, if we choose (v, s) as coordinates, then L can be given as a parametrized
submanifold:

(v, s) 7→ (v, s, p(v, s), T (v, s), e(v, s)).

Of course, the functions p(v, s), T (v, s), e(v, s) are not arbitrary. If e(v, s) is fixed, the
other two functions are completely determined.

We see that if L is Legendrian with respect to θ = de− Tds+ pdv, then
ev(v, s) = −p(v, s) and es(v, s) = T (v, s).



(p, v)- and (s, T )-coordinates
We look at two other possible choices of coordinates. Assume that L is given by
e(p, v), s(p, v), T (p, v). In these coordinates, we have for θ = de− Tds+ pdv

θ|L = ep(p, v)dp+ ev(p, v)dv − T (p, v)(sp(p, v)dp+ sv(p, v)dv) + pdv

= (ep(p, v)− T (p, v)sp(p, v))dp+ (ev(p, v)− T (p, v)sv(p, v) + p)dv = 0.

The three functions that define L satisfy a system of two partial differential equations:

ep(p, v) = T (p, v)sp(p, v), ev(p, v)− T (p, v)sv(p, v) + p = 0.

Now assume that L is given by e(T, s), p(T, s), v(T, s). Then we have

θ|L = eT (T, s)dT + es(T, s)ds− Tds+ p(T, s)(vT (T, s)dT + vs(T, s)ds)

= (eT (T, s) + p(T, s)vT (T, s))dT + (es(T, s) + p(T, s)vs(T, s)− T )ds = 0.

Again we obtain two systems of partial differential equations.



“Thermodynamic partial derivatives”

In the thermodynamic literature one often comes across expressions like
(
∂e
∂p

)
v
. This

notation arises because the partial derivatives are taken on the 2-dimensional manifold
L. When we compute the partial derivative along one of the coordinate functions, we
must also specify the other coordinate. In this case we have chosen the coordinates

(p, v). The expression
(
∂e
∂p

)
v

means that e is considered as a function of p and v.

In this notation, the two systems on the previous slide is written(
∂e

∂p

)
v

− T
(
∂s

∂p

)
v

= 0,

(
∂e

∂v

)
p

− T
(
∂s

∂v

)
p

+ p = 0

and (
∂e

∂T

)
s

+ p

(
∂v

∂T

)
s

= 0,

(
∂e

∂s

)
T

+ p

(
∂v

∂s

)
T

− T = 0.



Maxwell relations
For a thermodynamic system L, we have θ|L = 0 where θ = de− Tds+ pdv. Taking
the exterior derivative of θ gives

dθ = d(de)− dT ∧ ds+ dp ∧ dv.

Now, use s and v as coordinates so that L is given by T = T (s, v), p = p(s, v),
e = e(s, v). We then have

dT =

(
∂T

∂s

)
v

ds+

(
∂T

∂v

)
s

dv, dp =

(
∂p

∂s

)
v

ds+

(
∂p

∂v

)
s

dv,

so that dθ|L = 0 becomes

0 =

[(
∂T

∂s

)
v

ds+

(
∂T

∂v

)
s

dv

]
∧ ds−

[(
∂p

∂s

)
v

ds+

(
∂p

∂v

)
s

dv

]
∧ dv

=

[(
∂T

∂v

)
s

+

(
∂p

∂s

)
v

]
dv ∧ ds.

Because of this we have the relation
(
∂T
∂v

)
s

= −
(
∂p
∂s

)
v

which holds for every L.



Maxwell relations

The relation we found is one of the Maxwell relations. Some others are(
∂T

∂p

)
s

=

(
∂v

∂s

)
p

,

(
∂s

∂p

)
T

= −
(
∂v

∂T

)
p

,

(
∂s

∂v

)
T

=

(
∂p

∂T

)
v

.



Heat capacities

The heat capacity of a system is the following quantity:

C = lim
∆T→0

Q

∆T
.

This quantity depends of course on the point in L, but also on the path taken as ∆T
approaches 0. The two common versions of this quantity is Cp which is found by fixing
p and varying T , while the other one is Cv which is found by fixing v and varying T .
Since δQ = de+ δW = de+ pdv, we have

Cp =

(
∂e

∂T

)
p

+ p

(
∂v

∂T

)
p

, Cv =

(
∂e

∂T

)
v

.

Wouldn’t it be nice if they were written in the same coordinates?



Change of coordinates
On the previous slide, the functions Cp, Cv were written in different coordinates. Let
us try to write also Cv in terms of (T, p)-coordinates. We have

(∂T )v = A(∂T )p +B(∂p)T ,

(∂v)T = C(∂T )p +D(∂p)T ,

for some functions A,B,C,D. In order to determine A,B,C,D we require the
following:

(∂T )vT = 1, (∂T )vv = 0, (∂v)TT = 0, (∂v)T v = 1.

A = 1, A

(
∂v

∂T

)
p

+B

(
∂v

∂p

)
T

= 0, C = 0, C

(
∂v

∂T

)
p

+D

(
∂v

∂p

)
T

= 1

The solution is

A = 1, B = −

(
∂v
∂T

)
p(

∂v
∂p

)
T

, C = 0, D =
1(
∂v
∂p

)
T

.



Change of coordinates

In the end, we are left with the following:

(∂T )v = (∂T )p −

(
∂v
∂T

)
p(

∂v
∂p

)
T

(∂p)T ,

(∂v)T =
1(
∂v
∂p

)
T

(∂p)T .

In particular, we see that

Cv =

(
∂e

∂T

)
v

=

(
∂e

∂T

)
p

−

(
∂v
∂T

)
p(

∂v
∂p

)
T

(
∂e

∂p

)
T

.

Exercise: Show that we have, for the ideal gas, Cp = c+ a and Cv = c. (Remember
that states of an ideal gas satisfies the equations e = cT , v = aT/p.)



Change of state

Let L be the Legendrian submanifold of R5 corresponding to a thermodynamic system. A
continuous change from one state to another forms a curve γ on L. We define the work done
by the system along γ and the heat absorbed by the system along γ as

W =

∫
γ

pdv, Q =

∫
γ

Tds.

If the path is a circuit (starting point is the same as end point), then since de = δQ− δW and∫
γ
de = 0, we have W = Q. Let D be the domain in L enclosed by γ.

By Green’s theorem, we have in (p, v)- and (T, s)-coordinates

W =

∮
γ

pdv =

∫∫
D

dpdv =

∮
γ

Tds =

∫∫
D

dTds = Q.

Thus the work (and heat) of a circuit is equal to the area it encloses, in both (p, v)- and

(T, s)-coordinates. This makes such coordinates on L convenient choices.



The Carnot cycle (an ideal heat engine)

The Carnot cycle consists of 4 steps:

1. Isothermal expansion: The gas is connected to the hot
reservoir making T fixed at TH . It does work by
moving the piston upwards while absorbing heat from
the reservoir. The entropy increases from its starting
value s1.

2. Adiabatic expansion: The gas is isolated from the
reservoirs, but continues doing work (pushing the
piston) until T reaches TC . The entropy is kept fixed
at s2.

3. Isothermal compression: The gas is connected to the cold reservoir, making T
fixed at TC . Work is being done on the gas, moving the piston downwards and
heat is transferred to the reservoir. The entropy decreases to s1.

4. Adiabatic compression: The gas is isolated from the reservoirs, but work is still
done on it until the temperature reaches TH . The entropy is kept fixed at s1.



The Carnot cycle

Since the variables T, s take the same values at the end of a cycle as at the beginning,
this process traces out a cycle (closed curve) on the Legendrian manifold L defining
our system. If we choose (p, v)-coordinates, the cycle looks something like this:

The curves 1 and 3 are curves of constant T while 2 and 4 are curves of constant s.



The Carnot cycle for the ideal gas

For the ideal gas pv = T, e = T, s = ln e+ ln v + s0, we draw some curves of constant
temperature (red) and constant pressure (blue):



The Carnot cycle
The total work done by the engine during one cycle is equal to the area enclosed by
the curve.

W =

∫∫
D
dTds =

∫∫
D
dpdv

In a TS-diagram, the Carnot cycle takes the following simple form.

Thus W = (TH − TC)(s2 − s1).



The efficiency of the Carnot cycle

The efficiency of the cycle is defined as W
QH

= QH−QC
QH

= 1− QC
QH

, where QH is the
heat absorbed during the cycle, while QC is the heat given out.

The figure tells us that QH = TH(s2 − s1) while QC = −TC(s1 − s2) (since the heat
received is Q =

∫
γ Tds). Thus the efficiency of the Carnot cycle is 1− TC/TH .



Legendre transformations

The quantity H = e+ pv is called enthalpy. If we take the exterior derivative of this
function, we get

dH − de− pdv − vdp = 0.

If we remember that θ = de− Tds+ pdv and that θ|L = 0, we see that

(dH − de− pdv − vdp)|L = (dH − pdv − Tds)|L

This means that instead of considering (R5(v, p, T, e, s), θ), we can consider the
manifold R5(v, p, T, e,H) with the contact form dH − vdp− Tds. This type of
transformation is called a Legendre transformation. Notice how v and p changed roles
in the contact form.

Another physical quantity is the Gibbs free energy G = e+ pv − Ts = H − Ts.
Exercise: Show that θ becomes dG− vdp+ sdT after the Legendre transformation
given by G = e+ pv − Ts.



A note about adding chemical potentials

So far we only considered Legendrian submanifolds of the space R5(v, p, T, e, s). This
picture can be generalized by adding chemical potentials. In that case we consider the
pair

R5+2n(v, p, T, e, s, µ1, ..., µn, λ
1, ..., λn), θ = de− Tds− pdv − µidλi.

Here λi measure the concentrations of n different chemical substances, while the
conjugates µi are called chemical potentials.



Plan for tomorrow

Tomorrow, we will introduce another geometric structure: the metric. And we will see
what role it plays in thermodynamics.


