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Summary from yesterday

Yesterday's main topic was vector fields on an n-dimensional manifold M.

» A vector field is a section of the bundle T'M, i.e. a map M — T'M taking each
p € M to a vector in T,,M.

» Any set of coordinates z!,...,z™ on M gives rise to a set of n vector fields

Oy1, ..., 0 that span T}, M for every point p in the coordinate neighborhood.
» In these coordinates a general vector field takes the form

X =a' ()0 + -+ a"(x)0pn.

We also discussed distributions on M. A regular distribution of rank r was defined as a
collection of linear subspaces 11, C T),M depending smoothly on M. We say that a set
of vector fields X7, ..., X, span the distribution if the vectors X1|, ..., X[, span I,
at each point p. By Frobenius’ theorem, there exist r-dimensional integral manifolds if
and only if [X;, X;] € (X1,...,X,) forall 4, j.



Differential 1-forms

Let T;; M denote the vector space dual to T),M, i.e. the space of linear functions
T,M — R. It is a vector space of dimension n. Let T*M = LlpeMT;M. A section of
this bundle is called a 1-form. Let dz?|,,...,dz"|, denote the dual basis to

Optlp, -+, Opn|p at each point p:

d$i|p(axj ‘p) = 5;

We denote by dz’ the section given by p — dx|,. A general 1-form can be written in

coordinates as
o =bi(z)dz + - + by (x)dz™.

For X = al(x)0,1 + -+ + a™(x)0yn, we have

a(X) = by(z)at(z) + - bp(z)a"(z).



Another way to specify a distribution

Recall that a regular distribution or rank r on M was defined as a collection of
r-dimensional subspaces II,, C T,,M depending smoothly on the point p € M. We
know from linear algebra that any linear subspace in T),M can be given as the kernel
to a set of linear functions. This means that we can, instead of giving the vector fields
X1,..., X, that span II, give a set of n — r independent 1-forms a;, ..., a,—, such
that a;(X;) = 0 for each 1, j.

Example: Consider the distribution II = (9,,9,) on R3(z,y, z). For
a = adx + bdy + cdz, we have a(0;) = a and a(9y) = b. Thus we can write
IT = ker(dz).

Exercise: Show that the distribution (x0d, — y0;, 0.) can be given as the kernel of the
1-form xdz + ydy. Note that this is true only outside the line given by x = y = 0 (the
z-axis).



The contact distribution

Consider the distribution C = (0, + y3s, d) on R3(z,y, 2).

It is easy to see that both 0, 4+ y0. and 9, are in the kernel of dz — ydz. Thus
C = ker(dz — ydzr).



The contact distribution on R27+!

Let z',..., 2™, u,p1,...,pn be coordinates on R?"*1. The contact distribution C on
R?"+1 can be given as the kernel of the one-form

0 =du—prdzt — - — ppda™ = du — pidz’.
The rank of C = ker(0) is 2n. Let D, = 0, + p;Oy. The distribution C is spanned by
Dyi,...,Dgn,0p,...,0p,

since these are independent and 6(D,:) = 0, (0, ) = 0 (verify this). Let us compute
the Lie brackets.

[Dxi’ Dfrj] =0, [apiv 817]'] =0, [apiJ ij} = 6;au

The equalities [0, D,i] = 0, show that C is not integrable, meaning that there are no
2n-dimensional integral manifolds.



The algebra of differential forms
It is possible to check integrability of distributions by looking at the 1-forms defining
them. In order to do this, we need to extend the space of 1-forms.
Definition
A k-form w on M is a collection of multilinear and skew-symmetric maps
wp: TpM x --- x T,M — R depending smoothly on p.

We call functions on M 0O-forms and denote the space of k forms by QF(M) for
k=0,...,n. Let Q(M) = a1_,QF(M). For k vector fields X1, ..., X} we let
w(X1,...,Xp) € C°°(M) be the function defined by p — wy,(X1|p, ..., Xilp)-

There exists a product on (M), called the wedge product and denoted by A. For
a € QF(M) and B € QY(M), we have

alB(Xi, .., Xpp) = Z (=17 a(Xo1)s - Xor) B(Xo(kt1)s - Xo(kti))
Ueshk.’l

where Shy; C Sy are (k,[)-shuffles, i.e. permutations satisfying o(1) < --- < o (k)
ando(k+1) <--- <o(k+1).



In coordinates

The wedge product on 1-forms is skew-symmetric. In particular
dz' A da? = —dz? A dzt and da’ A da' = 0. The product of two 1-forms

a = a;dx’, B = bdz’
is the 2-form

a B =abidz' Adz' + arbodzt Ada® + -+ -+ apbp_1dz™ Adz" b + apbpde™ A da”
= (a1by — agby)dax* A dx* + (a1bs — asby)dz' Ada® 4 - + (an_1by — anby_1)dz™ 1 A dz™.

In the same way that 1-forms can be written in a C'°°(M)-linear combination of
dzl,... dz™, a 2-form can be written in a C°°(M)-linear combination of dx! A da’
where 1 <i < j <n.

Exercise: Show that the 2-form da! A dz? 4+ da® A da* on R* is not the product of
two 1-forms.



In coordinates

More generally, a k-form can be written as a C'°°(M)-linear combination of the
k-forms dx™ A --- ANdx' with 1 <ip < -+ < i <n:

Z iy (2)d2™ A - A d'E

1<i1 << <n

Notice that there are up to () nonzero terms in this sum and, in particular, when
k = n there is only one term.

For f € C®(M) = Q°(M) and a € QF(M) we have f A a = fa.



The exterior derivative

There exists a linear operator d on (M) which takes k-forms to (k + 1)-forms:
d: QF(M) — QFF1(M). It is defined uniquely by the conditions

> d(aAB) = (da) A B+ (=1)ka A (dB) for a € QF (M),

» d(da) =0,

> df = ggfidxi in local coordinates.
For a vector field X, we have df (X) = X (f).

For k-forms we have
d( Z ail...ikdaﬁil JACERIAN dmi’“) = Z dag,...i, N dz'' A -+ A da*,
1<iy < <ip<n 1<i) <-<ip<n

The importance of d comes from the fact that it is independent of the coordinate
system that is used.



Another formulation of Frobenius' theorem

For a set {wy,...,wy} of 1-forms on M, let
kerp(wi, ... ,wq) ={v € T,M | w;(v) =0Vi} C T,M

and let ker(wi, . ..,wq) = Upens kerp(wr, ..., wq) C T'M be the corresponding
subbundle. If dimker,(ws,...,wq) is the same for each p € M, then the distribution
IT defined by I, = kerp (w1, . ..,wq) is a regular distribution.

Theorem

Let IT = ker(w1, .. .,wq) be a distribution of the type described above. Then II is
integrable if and only if dw;|;p =0 fori=1,...,q.

In other words 1I is integrable if and only if for each pair X, Y on which every w;
vanishes we have dw;(X,Y) = 0 for every i.



Frobenius' theorem for distributions of hyperplanes
There is a special case when II = ker(w) for a single one-form with w|, # 0 for every
p € M. Then II, C T,M is an (n — 1)-dimensional hyperplane. In this case Frobenius’
theorem says that II is integrable if and only if dw|; = 0.

Theorem
The condition dw|r; = 0 is equivalent to w A dw = 0.

Proof.

wAdw =0 if and only if w A dw(X,Y, Z) = 0 for any three vectors X,Y, Z. It is
sufficient to verify the statement for X, Y, Z satisfying w(X) = w(Y) =0 and
w(Z) # 0*. In that case we have

wAdw(X,Y,Z) = w(Z)dw(X,Y).

L]
*Note that if, for example, both w(X) # 0 and w(Z) # 0, then
WwAdw(X,Y,Z) =wAdw(X,Y,Z) + wAdw(aZ,Y,Z) =wANdw(X +aZ,Y,Z), and you can always
choose a so that w(X +aZ) = 0.



Contact structures

Definition

A regular distribution IT = ker(w) on a (2n + 1)-dimensional manifold M is called a
contact structure on M if w A (dw)™ # 0. If such a structure is provided on M, we call
M a contact manifold.

For a regular distribution IT = ker(w), we noticed that 2-form dw|r1 can be interpreted
to measure the nonintegrability of II. In particular, if dw| = 0, then II is integrable.
The other extreme case is when the rank of dw|; is equal to the rank of II. This
means that for any nonzero vector field X there exists a vector field Y such that
w(X,Y) # 0, something that can only happen if the rank of II is even (so M must be
odd). On a (2n + 1)-dimensional manifold the condition that dw| is of rank 2n is
equivalent to w A (dw)™ # 0. In this sense, contact distributions are maximally far
from being integrable.

Since contact structures are not integrable, they have no (2n + 1)-dimensional integral
manifolds. Instead, their integral manifolds have at most dimension n.



The main example
Consider R?"*1 with the distribution I = ker(du — p;dz*). We already showed by
looking at the vector fields generating II that it is not integrable. Let us now do it by
looking at the 1-form w = du — p;dz’. We have

dw =0 —dp; Ada' — p; A ddz' = da* A dp;.
Further, we have
w A dw = (du — pidx*) A (dz? A dpj) = du A dx? A dp,
which is not zero. The distribution II is therefore not integrable. Since
(dw)™ = nldzt Adpy A -+ Adz™ Adpy,
we have
WA (dw)™ = (du — pidz®) A (dw)™ = nldu Adz' Adpy A--- Adz™ A dp, # 0.

This means that II is a contact structure on M.



Integral manifolds of ker(du — p;dz").

Let us find integral manifolds of dimension n. Let L be an integral manifold and
assume that we can take x!, ..., 2™ as coordinates on L. Then L is given by

U/:f<l'), plzgl<m)7 ceey pn:gn(x)
We have

(du — pda) |1, = df (x) — gi(e)d = ( O () - gxx)) aa.

The manifold L is an integral manifold if and only if (du — p;dz?)|;, = 0. In that case

all tangent vectors to L will be in ker(du — p;dx?). Thus L is an integral manifold if

and only if g;(x) = gﬁﬂ (x) fori=1,...,n.

Integral manifolds of dimension n on a (2n + 1)-dimensional contact manifold are
called Legendrian submanifolds.



Example: The jet space

For a function f € C®°(R"), let [f]} = f(a) + gg,- (a)(x® — a®) denote its degree 1

Taylor polynomial at a € R™ (its 1-jet at a). Define
JoR") ={[fla | f € C®(R").
Since each 1-jet is determined by n + 1 numbers (f(a), ngi (a)) we see that
dim J}(R™) = n + 1. Let now JY(R") = UgerJL(R™) denote the (2n + 1)-dimensional
space of all 1-jets (at any point). We may introduce coordinates z*, u,p; on J!(R):

AU =a, D= 1@, ) = )

1
a

This space is a bundle 71 : J!(R"™) — R™ with projection given by 1 ([f]}) = a.



Example: The jet space
Any function f € C°°(M) gives rise to a section j!f of m given by j!f(a) = [f]}
(notice that (71 0 71(f))(a) = 71 ([f].) = a). In coordinates x%, u, p;, we have

jl(f)(xl,...,x”) = (xl,,x",f(a:),%(:v),,%(x))

The space J!(R™) comes equipped with a contact structure given by w = du — p;dz?,
or alternatively by the vector fields D i = 0,i + p;0, and 0p,.

Let Ly = {j1(f)(z) | = € R"} C JL(R").

By the computations we did two slides ago, Ly are exactly the integral manifolds that
project surjectively to R™. In this sense, the contact distribution on J!(R") filters out,
from the set of all sections of 71, the ones that are prolongations (lifts) of functions on
R™.



A first-order PDE is a submanifold in J(R"™)

Let us for concreteness consider the PDE u,1 + uu,2 = 0. This PDE can be
considered as a submanifold

€= {p1 +upy =0} C J'(R?).

The significance of this submanifold is that if f(z!,22) is a solution to u,1 + w2 = 0,
then we have Ly C & for the submanifold Ly defined on the previous slide.

Take for example the solution u = —= of u,1 + uu,2 = 0. Then

1+
2

x? T 1 1,59
Lf:{u:’plz—(x1+1)27p2:$1+1}czj (R )

L_—0.

We see that (p1 + Up2)|Lf Tt +1)2 + z +1 ]

The contact distribution C = ker(du — p1dx! — padx?) on J'(R?) is of rank 4. It
restricts to a distribution C5 = Cq NT,€ on & (here q € £). Solutions of
Uy + uug2 = 0 correspond to integral manifolds of the distribution C¢ on &.



A first-order PDE is a submanifold in J*(R")




The Lie Derivative of 1-forms

Let X be a vector field and « be a k-form. We define the interior product
ix: QF(M) — QF1(M) by

(ixa)(Y1, ... Y1) = (X, Y7,..., Yi_1).
If B is an [-form, we have
ix(aAB)=ix(a)AB+ (—1)lanix(B).

Using this we can define the Lie derivative of a 1-form with respect to a vector field
through Cartan’s formula:
Lx =dix +ixd.

The Lie derivative gives the rate of change along integral curves of X. It can actually
be defined for arbitrary tensors. In particular, for a function f and vector field Y, the
Lie derivative is given by Lx f = X(f), LxY = [X,Y].



The Lie Derivative of 1-forms

For example, let w = du — p1dz! — pedz?® and X = 20, + 8,,. Then

ixw =z, dw = dz' A dpy + dz® A dpy
and
iX(dml Adpy + dx® A dp2)
= ix(dz) Adpy — dxt Nix(dpr) + ix (dz?) A dpy — da® Aix (dps)
= —da!.
We see that

Lyw = (dix +ixd)w = de' — dz' = 0.

We say that X preserves the 1-form w.



Contact vector fields

A contact vector field on a manifold M with contact structure II is a vector field X
satisfying [X, Y] € II for every Y € II. If I = ker(w) for a 1-form w, the condition of
X being a contact vector field can be written as

Lxw = \w
for some function A € C*°(M).
If w = du — p;dx’, then the general vector field satisfying Lxw = A\w is
Xp =F0y, — F,,(0yi + piOy) + (Fyi + piFy)0p,.

The function F' is called the generating function of the contact vector field X. Let's
write down some examples for different choices of F':

X*pz‘ = Oy, X, = ul, +p18pi, )(Vl,xlp2 = xlaxz + 0y —p26p1.

Exercise: Verify that these are contact vector fields by computing L xw.



A note on symmetries of PDEs
Consider again the PDE

£ = {p1 +ups = 0} C JHR?).

Definition
An (infinitesimal) symmetry of £ is a contact vector field that is tangent to &, i.e. a
vector field X satisfying X (p1 + up2)|e = 0.

Two of the contact vector fields from the previous slide are symmetries of &:

X,pi = 0O, )(1,331;02 = :ElaxQ + 0y — pgapl.

Their flows are transformations on J!(IR?):
ot a4t (2%, u,p1) — (2 + tzl u+t,p1 — spo)
. . 2
We can use these transformations to transform the solution u = xf—ﬂ to other

. . . . 2 1
solutions. For example, using the last of them gives the solution u = fcxfrﬁ —t




The thermodynamic identity

The fundamental thermodynamic identity is often written as
dU =TdS — PdV

where the variables U, T, S, P,V are called inner energy, temperature, entropy, pressure
and volume. It can be regarded as a statement of conservation of energy. In that
context dU, dS, dV is often talked about as “small changes” in these variables.

By rewriting the identity slightly we recognize a 1-form 6 = dU — T'dS + PdV. The
distribution ker(#) is a contact distribution. The thermodynamic identity can be
reformulated by simply saying that a thermodynamical system is a 2-dimensional
integral manifold of the distribution § on R>(U, T, S, P, V).

Exercise: Verify that 6 A df A df = 0.



Locally, all contact structures look the same

Theorem (Darboux)

Let w be a contact form on M. Then there exist local coordinates

b ., x™ u,p1, ..., pn such that w = du — p;da’.



Exercises

1. Consider the distribution on R* spanned by the vector fields 0,1, 0,2, exz&ps.
» Describe it as the kernel of a 1-form a = a;dz’. l.e. determine the coefficients a’.
Are they unique?
» Show that the distribution is integrable (using the vector fields, the 1-form, or both).
» Describe the integral manifolds.
2. Consider the space R*(z,u, p, q) with the distribution C = (0, + pdy + q0p, Oy).
» Describe the distribution as the kernel of two 1-forms.
» [s the distribution integrable?
» Is this a contact manifold?
(This space is J2(R), the space of 2-jets of functions on R. A function
f € C>®(R) determines a section of J2(R) given by =+ (z, f(z), f'(z), f"(z)).
Its image is a one-dimensional integral manifold of C. A second-order ODE can be
thought of as a 3-dimensional submanifold £ € J?(R) and its solutions
correspond to integral curves of C N TE.)
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