Thermodynamics and contact geometry Lecture 2: More differential geometry and distributions

Eivind Schneider

Department of Mathematics, University of Hradec Králové

July 20, 2021

Summary from yesterday

Yesterday's main topic was vector fields on an n -dimensional manifold M .

- A vector field is a section of the bundle TM , i.e. a map $M \to TM$ taking each $p \in M$ to a vector in T_pM .
- Any set of coordinates x^1, \ldots, x^n on M gives rise to a set of n vector fields $\partial_{x^1}, \ldots, \partial_{x^n}$ that span T_pM for every point p in the coordinate neighborhood.
- \blacktriangleright In these coordinates a general vector field takes the form

$$
X = a^1(x)\partial_{x^1} + \cdots + a^n(x)\partial_{x^n}.
$$

We also discussed distributions on M. A regular distribution of rank r was defined as a collection of linear subspaces $\Pi_p \subset T_pM$ depending smoothly on M. We say that a set of vector fields X_1, \ldots, X_r span the distribution if the vectors $X_1|_p, \ldots, X_r|_p$ span Π_p at each point p . By Frobenius' theorem, there exist r -dimensional integral manifolds if and only if $[X_i, X_j] \in \langle X_1, \ldots, X_r \rangle$ for all i, j .

Differential 1-forms

Let $T^{\ast}_{p}M$ denote the vector space dual to $T_{p}M$, i.e. the space of linear functions $T_pM \to \mathbb{R}$. It is a vector space of dimension $n.$ Let $T^*M = \sqcup_{p \in M} T^*_pM.$ A section of this bundle is called a 1-form. Let $dx^{1}|_{p},\ldots ,dx^{n}|_{p}$ denote the dual basis to $\partial_{x^1}|_p, \cdots, \partial_{x^n}|_p$ at each point p:

$$
dx^i|_p(\partial_{x^j}|_p)=\delta^i_j.
$$

We denote by dx^i the section given by $p\mapsto dx^i|_p.$ A general 1-form can be written in coordinates as

$$
\alpha = b_1(x)dx^1 + \cdots + b_n(x)dx^n.
$$

For $X=a^1(x)\partial_{x^1}+\cdots+a^n(x)\partial_{x^n}$, we have

$$
\alpha(X) = b_1(x)a^1(x) + \cdots b_n(x)a^n(x).
$$

Another way to specify a distribution

Recall that a regular distribution or rank r on M was defined as a collection of r-dimensional subspaces $\Pi_n \subset T_nM$ depending smoothly on the point $p \in M$. We know from linear algebra that any linear subspace in T_pM can be given as the kernel to a set of linear functions. This means that we can, instead of giving the vector fields X_1, \ldots, X_r that span Π , give a set of $n-r$ independent 1-forms $\alpha_1, \ldots, \alpha_{n-r}$ such that $\alpha_i(X_i) = 0$ for each i, j.

Example: Consider the distribution $\Pi = \langle \partial_x, \partial_y \rangle$ on $\mathbb{R}^3(x, y, z)$. For $\alpha = adx + bdy + cdz$, we have $\alpha(\partial_x) = a$ and $\alpha(\partial_y) = b$. Thus we can write $\Pi = \ker(dz)$.

Exercise: Show that the distribution $\langle x\partial_y - y\partial_x, \partial_z \rangle$ can be given as the kernel of the 1-form $xdx + ydy$. Note that this is true only outside the line given by $x = y = 0$ (the z -axis).

The contact distribution

Consider the distribution $\mathcal{C} = \langle \partial_x + y \partial_z, \partial_y \rangle$ on $\mathbb{R}^3(x, y, z)$.

It is easy to see that both $\partial_x + y \partial_z$ and ∂_y are in the kernel of $dz - y dx$. Thus $\mathcal{C} = \ker(dz - ydx)$.

The contact distribution on \mathbb{R}^{2n+1}

Let $x^1,\ldots,x^n,u,p_1,\ldots,p_n$ be coordinates on $\mathbb{R}^{2n+1}.$ The contact distribution $\mathcal C$ on \mathbb{R}^{2n+1} can be given as the kernel of the one-form

$$
\theta = du - p_1 dx^1 - \dots - p_n dx^n = du - p_i dx^i.
$$

The rank of $C = \ker(\theta)$ is 2n. Let $D_{x_i} = \partial_{x_i} + p_i \partial_u$. The distribution C is spanned by

$$
D_{x^1},\ldots,D_{x^n},\partial_{p_1},\ldots,\partial_{p_n}
$$

since these are independent and $\theta(D_{x^i})=0$, $\theta(\partial_{p_n})=0$ (verify this). Let us compute the Lie brackets.

$$
[D_{x^i},D_{x^j}]=0,\qquad [\partial_{p_i},\partial_{p_j}]=0,\qquad [\partial_{p_i},D_{x^j}]=\delta^i_j\partial_u.
$$

The equalities $[\partial_{p_i}D_{x_i}]=\partial_u$ show that C is not integrable, meaning that there are no $2n$ -dimensional integral manifolds.

The algebra of differential forms

It is possible to check integrability of distributions by looking at the 1-forms defining them. In order to do this, we need to extend the space of 1-forms.

Definition

A k-form ω on M is a collection of multilinear and skew-symmetric maps $\omega_p: T_pM \times \cdots \times T_pM \to \mathbb{R}$ depending smoothly on p.

We call functions on M 0-forms and denote the space of k forms by $\Omega^k(M)$ for $k=0,\ldots,n.$ Let $\Omega(M)=\oplus_{k=0}^{n}\Omega^{k}(M).$ For k vector fields $X_{1},...,X_{k}$ we let $\omega(X_1, ..., X_n) \in C^{\infty}(M)$ be the function defined by $p \mapsto \omega_p(X_1|_p, ..., X_k|_p)$.

There exists a product on $\Omega(M)$, called the wedge product and denoted by \wedge . For $\alpha \in \Omega^k(M)$ and $\beta \in \Omega^l(M)$, we have

$$
\alpha \wedge \beta(X_1, ..., X_{k+l}) = \sum_{\sigma \in Sh_{k,l}} (-1)^{\sigma} \alpha(X_{\sigma(1)}, ..., X_{\sigma(k)}) \beta(X_{\sigma(k+1)}, ..., X_{\sigma(k+l)})
$$

where $\text{Sh}_{k,l} \subset S_{k+l}$ are (k,l) -shuffles, i.e. permutations satisfying $\sigma(1) < \cdots < \sigma(k)$ and $\sigma(k+1) < \cdots < \sigma(k+l)$.

In coordinates

The wedge product on 1-forms is skew-symmetric. In particular $dx^i\wedge dx^j=-dx^j\wedge dx^i$ and $dx^i\wedge dx^i=0.$ The product of two 1-forms

$$
\alpha = a_i dx^i, \qquad \beta = b_i dx^i
$$

is the 2-form

$$
\alpha \wedge \beta = a_1b_1dx^1 \wedge dx^1 + a_1b_2dx^1 \wedge dx^2 + \dots + \dots + a_nb_{n-1}dx^n \wedge dx^{n-1} + a_nb_ndx^n \wedge dx^n
$$

= $(a_1b_2 - a_2b_1)dx^1 \wedge dx^2 + (a_1b_3 - a_3b_1)dx^1 \wedge dx^3 + \dots + (a_{n-1}b_n - a_nb_{n-1})dx^{n-1} \wedge dx^n$.

In the same way that 1-forms can be written in a $C^{\infty}(M)$ -linear combination of dx^1,\ldots, dx^n , a 2-form can be written in a $C^\infty(M)$ -linear combination of $dx^i\wedge dx^j$ where $1 \leq i \leq j \leq n$.

Exercise: Show that the 2-form $dx^1 \wedge dx^2 + dx^3 \wedge dx^4$ on \mathbb{R}^4 is not the product of two 1-forms.

In coordinates

More generally, a k-form can be written as a $C^{\infty}(M)$ -linear combination of the k-forms $dx^{i_1} \wedge \cdots \wedge dx^{i_k}$ with $1 \leq i_1 \leq \cdots \leq i_k \leq n$.

$$
\sum_{1 \leq i_1 < \cdots < i_k \leq n} a_{i_1 \cdots i_k}(x) dx^{i_1} \wedge \cdots \wedge dx^{i_k}.
$$

Notice that there are up to $\binom{n}{k}$ $\binom{n}{k}$ nonzero terms in this sum and, in particular, when $k = n$ there is only one term.

For $f\in C^\infty(M)=\Omega^0(M)$ and $\alpha\in \Omega^k(M)$ we have $f\wedge \alpha=f\alpha.$

The exterior derivative

There exists a linear operator d on $\Omega(M)$ which takes k-forms to $(k+1)$ -forms: $d\colon \Omega^k(M)\to \Omega^{k+1}(M).$ It is defined uniquely by the conditions

$$
\blacktriangleright d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^k \alpha \wedge (d\beta) \text{ for } \alpha \in \Omega^k(M),
$$

$$
\blacktriangleright d(d\alpha) = 0,
$$

•
$$
df = \frac{\partial f}{\partial x^i} dx^i
$$
 in local coordinates.

For a vector field X, we have $df(X) = X(f)$.

For k -forms we have

$$
d\Big(\sum_{1\leq i_1<\cdots
$$

The importance of d comes from the fact that it is independent of the coordinate system that is used.

Another formulation of Frobenius' theorem

For a set $\{\omega_1, \ldots, \omega_q\}$ of 1-forms on M, let

$$
\ker_p(\omega_1,\ldots,\omega_q)=\{v\in T_pM\mid \omega_i(v)=0\ \forall i\}\subset T_pM
$$

and let $\ker(\omega_1,\ldots,\omega_q) = \bigsqcup_{n\in M} \ker_n(\omega_1,\ldots,\omega_q) \subset TM$ be the corresponding subbundle. If $\dim \ker_n(\omega_1, \ldots, \omega_q)$ is the same for each $p \in M$, then the distribution Π defined by $\Pi_p = \text{ker}_p(\omega_1, \dots, \omega_q)$ is a regular distribution.

Theorem

Let $\Pi = \ker(\omega_1, \ldots, \omega_q)$ be a distribution of the type described above. Then Π is integrable if and only if $d\omega_i|_{\Pi} = 0$ for $i = 1, ..., q$.

In other words Π is integrable if and only if for each pair X, Y on which every ω_i vanishes we have $d\omega_i(X, Y) = 0$ for every i.

Frobenius' theorem for distributions of hyperplanes

There is a special case when $\Pi = \ker(\omega)$ for a single one-form with $\omega|_p \neq 0$ for every $p \in M$. Then $\Pi_p \subset T_pM$ is an $(n-1)$ -dimensional hyperplane. In this case Frobenius' theorem says that Π is integrable if and only if $d\omega|_{\Pi} = 0$.

Theorem

The condition $d\omega|_{\Pi} = 0$ is equivalent to $\omega \wedge d\omega = 0$.

Proof.

 $\omega \wedge d\omega = 0$ if and only if $\omega \wedge d\omega(X, Y, Z) = 0$ for any three vectors X, Y, Z . It is sufficient to verify the statement for X, Y, Z satisfying $\omega(X) = \omega(Y) = 0$ and $\omega(Z) \neq 0^*$. In that case we have

$$
\omega \wedge d\omega(X, Y, Z) = \omega(Z) d\omega(X, Y).
$$

П

*Note that if, for example, both $\omega(X) \neq 0$ and $\omega(Z) \neq 0$, then

 $\omega \wedge d\omega(X, Y, Z) = \omega \wedge d\omega(X, Y, Z) + \omega \wedge d\omega(aZ, Y, Z) = \omega \wedge d\omega(X + aZ, Y, Z)$, and you can always choose a so that $\omega(X + aZ) = 0$.

Contact structures

Definition

A regular distribution $\Pi = \ker(\omega)$ on a $(2n + 1)$ -dimensional manifold M is called a contact structure on M if $\omega\wedge(d\omega)^n\neq 0.$ If such a structure is provided on $M,$ we call M a contact manifold.

For a regular distribution $\Pi = \ker(\omega)$, we noticed that 2-form $d\omega|_{\Pi}$ can be interpreted to measure the nonintegrability of Π . In particular, if $d\omega|_{\Pi} = 0$, then Π is integrable. The other extreme case is when the rank of $d\omega|_{\Pi}$ is equal to the rank of Π . This means that for any nonzero vector field X there exists a vector field Y such that $\omega(X, Y) \neq 0$, something that can only happen if the rank of Π is even (so M must be odd). On a $(2n + 1)$ -dimensional manifold the condition that $d\omega|_{\Pi}$ is of rank $2n$ is equivalent to $\omega \wedge (d\omega)^n \neq 0.$ In this sense, contact distributions are maximally far from being integrable.

Since contact structures are not integrable, they have no $(2n + 1)$ -dimensional integral manifolds. Instead, their integral manifolds have at most dimension n .

The main example

Consider \mathbb{R}^{2n+1} with the distribution $\Pi = \ker(du - p_i dx^i).$ We already showed by looking at the vector fields generating Π that it is not integrable. Let us now do it by looking at the 1-form $\omega=du-p_idx^i$. We have

$$
d\omega = 0 - dp_i \wedge dx^i - p_i \wedge ddx^i = dx^i \wedge dp_i.
$$

Further, we have

$$
\omega \wedge d\omega = (du - p_i dx^i) \wedge (dx^j \wedge dp_j) = du \wedge dx^j \wedge dp_j
$$

which is not zero. The distribution Π is therefore not integrable. Since

$$
(d\omega)^n = n! dx^1 \wedge dp_1 \wedge \cdots \wedge dx^n \wedge dp_n
$$

we have

$$
\omega \wedge (d\omega)^n = (du - p_i dx^i) \wedge (d\omega)^n = n! du \wedge dx^1 \wedge dp_1 \wedge \cdots \wedge dx^n \wedge dp_n \neq 0.
$$

This means that Π is a contact structure on M .

Integral manifolds of $\ker(du - p_i dx^i)$.

Let us find integral manifolds of dimension n. Let L be an integral manifold and assume that we can take $x^1,...,x^n$ as coordinates on $L.$ Then L is given by

$$
u = f(x)
$$
, $p_1 = g_1(x)$, ..., $p_n = g_n(x)$.

We have

$$
(du - p_i dx^i)|_L = df(x) - g_i(x) dx = \left(\frac{\partial f}{\partial x^i}(x) - g_i(x)\right) dx^i.
$$

The manifold L is an integral manifold if and only if $(du-p_idx^i)|_L=0.$ In that case all tangent vectors to L will be in $\ker(du-p_idx^i)$. Thus L is an integral manifold if and only if $g_i(x) = \frac{\partial f}{\partial x^i}(x)$ for $i = 1, ..., n$.

Integral manifolds of dimension n on a $(2n + 1)$ -dimensional contact manifold are called Legendrian submanifolds.

Example: The jet space

For a function $f\in C^\infty(\Bbb{R}^n)$, let $[f]_a^1=f(a)+\frac{\partial f}{\partial x^i}(a)(x^i-a^i)$ denote its degree 1 Taylor polynomial at $a\in\mathbb{R}^n$ (its 1-jet at $a)$. Define

 $J_a^1(\mathbb{R}^n) = \{ [f]_a^1 | f \in C^{\infty}(\mathbb{R}^n).$

Since each 1-jet is determined by $n+1$ numbers $(f(a), \frac{\partial f}{\partial x^i}(a))$ we see that $\dim J_a^1(\R^n)=n+1.$ Let now $J^1(\R^n)=\sqcup_{a\in\R}J_a^1(\R^n)$ denote the $(2n+1)$ -dimensional space of all 1-jets (at any point). We may introduce coordinates x^i,u,p_i on $J^1(\mathbb{R})$:

$$
x^{i}([f]_{a}^{1}) = a^{i}, \qquad u([f]_{a}^{1}) = f(a), \qquad p_{i}([f]_{a}^{1}) = \frac{\partial f}{\partial x^{i}}(a).
$$

This space is a bundle $\pi_1\colon J^1(\mathbb{R}^n)\to\mathbb{R}^n$ with projection given by $\pi_1([f]_a^1)=a.$

Example: The jet space

Any function $f\in C^\infty(M)$ gives rise to a section j^1f of π_1 given by $j^1f(a)=[f]_a^1$ (notice that $(\pi_1 \circ j^1(f))(a) = \pi_1([f]_a^1) = a)$. In coordinates x^i, u, p_i , we have

$$
j^{1}(f)(x^{1},...,x^{n}) = (x^{1},...,x^{n},f(x),\frac{\partial f}{\partial x^{1}}(x),...,\frac{\partial f}{\partial x^{n}}(x)).
$$

The space $J^1(\mathbb{R}^n)$ comes equipped with a contact structure given by $\omega=du-p_idx^i$, or alternatively by the vector fields $D_{x^i} = \partial_{x^i} + p_i\partial_u$ and $\partial_{p_i}.$

Let $L_f = \{j^1(f)(x) \mid x \in \mathbb{R}^n\} \subset J^1(\mathbb{R}^n)$.

By the computations we did two slides ago, L_f are exactly the integral manifolds that project surjectively to \mathbb{R}^n . In this sense, the contact distribution on $J^1(\mathbb{R}^n)$ filters out, from the set of all sections of π_1 , the ones that are prolongations (lifts) of functions on \mathbb{R}^n .

A first-order PDE is a submanifold in $J^1(\mathbb{R}^n)$

Let us for concreteness consider the PDE $u_{x1} + uu_{x2} = 0$. This PDE can be considered as a submanifold

$$
\mathcal{E} = \{p_1 + up_2 = 0\} \subset J^1(\mathbb{R}^2).
$$

The significance of this submanifold is that if $f(x^1,x^2)$ is a solution to $u_{x^1}+uu_{x^2}=0$, then we have $L_f \subset \mathcal{E}$ for the submanifold L_f defined on the previous slide.

Take for example the solution $u=\frac{x^2}{x^1+1}$ of $u_{x^1}+uu_{x^2}=0.$ Then

$$
L_f = \left\{ u = \frac{x^2}{x^1 + 1}, p_1 = -\frac{x^2}{(x^1 + 1)^2}, p_2 = \frac{1}{x^1 + 1} \right\} \subset J^1(\mathbb{R}^2).
$$

We see that $(p_1 + up_2)|_{L_f} = -\frac{x^2}{(x^1+1)^2} + \frac{x^2}{x^1+1} \cdot \frac{1}{x^1+1} = 0.$

The contact distribution $\mathcal{C}=\ker(du-p_1dx^1-p_2dx^2)$ on $J^1(\mathbb{R}^2)$ is of rank 4. It restricts to a distribution $\mathcal{C}_q^{\mathcal{E}}=\mathcal{C}_q\cap T_q\mathcal{E}$ on $\mathcal E$ (here $q\in \mathcal E).$ Solutions of $u_{x^1} + uu_{x^2} = 0$ correspond to integral manifolds of the distribution $\mathcal{C}^{\mathcal{E}}$ on $\mathcal{E}.$

A first-order PDE is a submanifold in $J^1(\mathbb{R}^n)$

The Lie Derivative of 1-forms

Let X be a vector field and α be a k-form. We define the interior product $i_X\colon \Omega^k(M)\to \Omega^{k-1}(M)$ by

$$
(i_X\alpha)(Y_1, ..., Y_{k-1}) = \alpha(X, Y_1, ..., Y_{k-1}).
$$

If β is an *l*-form, we have

$$
i_X(\alpha \wedge \beta) = i_X(\alpha) \wedge \beta + (-1)^l \alpha \wedge i_X(\beta).
$$

Using this we can define the Lie derivative of a 1-form with respect to a vector field through Cartan's formula:

$$
L_X = di_X + i_X d.
$$

The Lie derivative gives the rate of change along integral curves of X. It can actually be defined for arbitrary tensors. In particular, for a function f and vector field Y, the Lie derivative is given by $L_Xf = X(f)$, $L_XY = [X, Y]$.

The Lie Derivative of 1-forms

For example, let $\omega = du - p_1 dx^1 - p_2 dx^2$ and $X = x^1 \partial_u + \partial_{p_1}$. Then

$$
i_X \omega = x^1, \qquad d\omega = dx^1 \wedge dp_1 + dx^2 \wedge dp_2
$$

and

$$
i_X(dx^1 \wedge dp_1 + dx^2 \wedge dp_2)
$$

= $i_X(dx^1) \wedge dp_1 - dx^1 \wedge i_X(dp_1) + i_X(dx^2) \wedge dp_2 - dx^2 \wedge i_X(dp_2)$
= $-dx^1$.

We see that

$$
L_X \omega = (di_X + i_X d)\omega = dx^1 - dx^1 = 0.
$$

We say that X preserves the 1-form ω .

Contact vector fields

A contact vector field on a manifold M with contact structure Π is a vector field X satisfying $[X, Y] \in \Pi$ for every $Y \in \Pi$. If $\Pi = \ker(\omega)$ for a 1-form ω , the condition of X being a contact vector field can be written as

$$
L_X\omega=\lambda\omega
$$

for some function $\lambda \in C^{\infty}(M)$.

If $\omega=du-p_idx^i$, then the general vector field satisfying $L_X\omega=\lambda\omega$ is

$$
X_F = F\partial_u - F_{p_i}(\partial_{x^i} + p_i\partial_u) + (F_{x^i} + p_iF_u)\partial_{p_i}.
$$

The function F is called the generating function of the contact vector field X . Let's write down some examples for different choices of F :

$$
X_{-p_i} = \partial_{x^i}, \qquad X_u = u\partial_u + p_i\partial_{p_i}, \qquad X_{1-x^1p_2} = x^1\partial_{x^2} + \partial_u - p_2\partial_{p_1}.
$$

Exercise: Verify that these are contact vector fields by computing $L_X\omega$.

A note on symmetries of PDEs

Consider again the PDE

$$
\mathcal{E} = \{p_1 + up_2 = 0\} \subset J^1(\mathbb{R}^2).
$$

Definition

An (infinitesimal) symmetry of $\mathcal E$ is a contact vector field that is tangent to $\mathcal E$, i.e. a vector field X satisfying $X(p_1 + up_2)|_{\mathcal{E}} = 0$.

Two of the contact vector fields from the previous slide are symmetries of \mathcal{E} :

$$
X_{-p_i} = \partial_{x^i}, \qquad X_{1-x^1p_2} = x^1 \partial_{x^2} + \partial_u - p_2 \partial_{p_1}.
$$

Their flows are transformations on $J^1(\mathbb{R}^2)$:

$$
x^{i} \mapsto x^{i} + t
$$
, $(x^{2}, u, p_{1}) \mapsto (x^{2} + tx^{1}, u + t, p_{1} - sp_{2})$

We can use these transformations to transform the solution $u=\frac{x^2}{x^1+1}$ to other solutions. For example, using the last of them gives the solution $u=\frac{x^2+tx^1}{x^1+1}-t.$

The thermodynamic identity

The fundamental thermodynamic identity is often written as

 $dU = T dS - P dV$

where the variables U, T, S, P, V are called inner energy, temperature, entropy, pressure and volume. It can be regarded as a statement of conservation of energy. In that context dU, dS, dV is often talked about as "small changes" in these variables.

By rewriting the identity slightly we recognize a 1-form $\theta = dU - T dS + P dV$. The distribution $\ker(\theta)$ is a contact distribution. The thermodynamic identity can be reformulated by simply saying that a thermodynamical system is a 2-dimensional integral manifold of the distribution θ on $\mathbb{R}^5(U,T,S,P,V)$.

Exercise: Verify that $\theta \wedge d\theta \wedge d\theta = 0$.

Locally, all contact structures look the same

Theorem (Darboux)

Let ω be a contact form on M. Then there exist local coordinates $x^1,\ldots,x^n,u,p_1,\ldots,p_n$ such that $\omega=du-p_idx^i.$

Exercises

- 1. Consider the distribution on \mathbb{R}^4 spanned by the vector fields $\partial_{x^1},\partial_{x^2},e^{x^2}\partial_{x^3}.$
	- **Describe it as the kernel of a 1-form** $\alpha = a_i dx^i$. I.e. determine the coefficients a^i . Are they unique?
	- \triangleright Show that the distribution is integrable (using the vector fields, the 1-form, or both).
	- Describe the integral manifolds.
- 2. Consider the space $\mathbb{R}^4(x,u,p,q)$ with the distribution $\mathcal{C}=\langle\partial_x+p\partial_u+q\partial_p,\partial_q\rangle.$
	- \triangleright Describe the distribution as the kernel of two 1-forms.
	- \blacktriangleright Is the distribution integrable?
	- \blacktriangleright Is this a contact manifold?

(This space is $J^2(\mathbb{R})$, the space of 2-jets of functions on \mathbb{R} . A function $f \in C^{\infty}(\mathbb{R})$ determines a section of $J^2(\mathbb{R})$ given by $x \mapsto (x, f(x), f'(x), f''(x))$. Its image is a one-dimensional integral manifold of C . A second-order ODE can be thought of as a 3-dimensional submanifold $\mathcal{E}\subset J^2(\mathbb{R})$ and its solutions correspond to integral curves of $C \cap T\mathcal{E}$.)

Sources

- \triangleright R.W. Sharpe, Differential geometry: Cartan's Generalization of Klein's Erlangen Program, Springer (1997).
- ▶ V.I. Arnol'd, Mathematical Methods of Classical Mechanics, 2nd ed., Springer-Verlag (1989).
- ▶ I.S. Krasil'shchik, A.M. Vinogradov (eds.), Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, AMS (1999)