
Thermodynamics and contact geometry
Lecture 2: More differential geometry and distributions

Eivind Schneider

Department of Mathematics, University of Hradec Králové
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Summary from yesterday

Yesterday’s main topic was vector fields on an n-dimensional manifold M .

I A vector field is a section of the bundle TM , i.e. a map M → TM taking each
p ∈M to a vector in TpM .

I Any set of coordinates x1, . . . , xn on M gives rise to a set of n vector fields
∂x1 , . . . , ∂xn that span TpM for every point p in the coordinate neighborhood.

I In these coordinates a general vector field takes the form

X = a1(x)∂x1 + · · ·+ an(x)∂xn .

We also discussed distributions on M . A regular distribution of rank r was defined as a
collection of linear subspaces Πp ⊂ TpM depending smoothly on M . We say that a set
of vector fields X1, . . . , Xr span the distribution if the vectors X1|p, . . . , Xr|p span Πp

at each point p. By Frobenius’ theorem, there exist r-dimensional integral manifolds if
and only if [Xi, Xj ] ∈ 〈X1, . . . , Xr〉 for all i, j.



Differential 1-forms

Let T ∗pM denote the vector space dual to TpM , i.e. the space of linear functions
TpM → R. It is a vector space of dimension n. Let T ∗M = tp∈MT ∗pM . A section of
this bundle is called a 1-form. Let dx1|p, . . . , dxn|p denote the dual basis to
∂x1 |p, · · · , ∂xn |p at each point p:

dxi|p(∂xj |p) = δij .

We denote by dxi the section given by p 7→ dxi|p. A general 1-form can be written in
coordinates as

α = b1(x)dx1 + · · ·+ bn(x)dxn.

For X = a1(x)∂x1 + · · ·+ an(x)∂xn , we have

α(X) = b1(x)a1(x) + · · · bn(x)an(x).



Another way to specify a distribution

Recall that a regular distribution or rank r on M was defined as a collection of
r-dimensional subspaces Πp ⊂ TpM depending smoothly on the point p ∈M . We
know from linear algebra that any linear subspace in TpM can be given as the kernel
to a set of linear functions. This means that we can, instead of giving the vector fields
X1, . . . , Xr that span Π, give a set of n− r independent 1-forms α1, . . . , αn−r such
that αi(Xj) = 0 for each i, j.

Example: Consider the distribution Π = 〈∂x, ∂y〉 on R3(x, y, z). For
α = adx+ bdy + cdz, we have α(∂x) = a and α(∂y) = b. Thus we can write
Π = ker(dz).

Exercise: Show that the distribution 〈x∂y − y∂x, ∂z〉 can be given as the kernel of the
1-form xdx+ ydy. Note that this is true only outside the line given by x = y = 0 (the
z-axis).



The contact distribution

Consider the distribution C = 〈∂x + y∂z, ∂y〉 on R3(x, y, z).

It is easy to see that both ∂x + y∂z and ∂y are in the kernel of dz − ydx. Thus
C = ker(dz − ydx).



The contact distribution on R2n+1

Let x1, . . . , xn, u, p1, . . . , pn be coordinates on R2n+1. The contact distribution C on
R2n+1 can be given as the kernel of the one-form

θ = du− p1dx
1 − · · · − pndxn = du− pidxi.

The rank of C = ker(θ) is 2n. Let Dxi = ∂xi + pi∂u. The distribution C is spanned by

Dx1 , . . . , Dxn , ∂p1 , . . . , ∂pn

since these are independent and θ(Dxi) = 0, θ(∂pn) = 0 (verify this). Let us compute
the Lie brackets.

[Dxi , Dxj ] = 0, [∂pi , ∂pj ] = 0, [∂pi , Dxj ] = δij∂u.

The equalities [∂piDxi ] = ∂u show that C is not integrable, meaning that there are no
2n-dimensional integral manifolds.



The algebra of differential forms
It is possible to check integrability of distributions by looking at the 1-forms defining
them. In order to do this, we need to extend the space of 1-forms.

Definition
A k-form ω on M is a collection of multilinear and skew-symmetric maps
ωp : TpM × · · · × TpM → R depending smoothly on p.

We call functions on M 0-forms and denote the space of k forms by Ωk(M) for
k = 0, . . . , n. Let Ω(M) = ⊕nk=0Ωk(M). For k vector fields X1, ..., Xk we let
ω(X1, ..., Xn) ∈ C∞(M) be the function defined by p 7→ ωp(X1|p, ..., Xk|p).

There exists a product on Ω(M), called the wedge product and denoted by ∧. For
α ∈ Ωk(M) and β ∈ Ωl(M), we have

α ∧ β(X1, ..., Xk+l) =
∑

σ∈Shk,l

(−1)σα(Xσ(1), ..., Xσ(k))β(Xσ(k+1), ..., Xσ(k+l))

where Shk,l ⊂ Sk+l are (k, l)-shuffles, i.e. permutations satisfying σ(1) < · · · < σ(k)
and σ(k + 1) < · · · < σ(k + l).



In coordinates

The wedge product on 1-forms is skew-symmetric. In particular
dxi ∧ dxj = −dxj ∧ dxi and dxi ∧ dxi = 0. The product of two 1-forms

α = aidx
i, β = bidx

i

is the 2-form

α ∧ β = a1b1dx
1 ∧ dx1 + a1b2dx

1 ∧ dx2 + · · ·+ · · ·+ anbn−1dx
n ∧ dxn−1 + anbndx

n ∧ dxn

= (a1b2 − a2b1)dx1 ∧ dx2 + (a1b3 − a3b1)dx1 ∧ dx3 + · · ·+ (an−1bn − anbn−1)dxn−1 ∧ dxn.

In the same way that 1-forms can be written in a C∞(M)-linear combination of
dx1, . . . , dxn, a 2-form can be written in a C∞(M)-linear combination of dxi ∧ dxj
where 1 ≤ i < j ≤ n.

Exercise: Show that the 2-form dx1 ∧ dx2 + dx3 ∧ dx4 on R4 is not the product of
two 1-forms.



In coordinates

More generally, a k-form can be written as a C∞(M)-linear combination of the
k-forms dxi1 ∧ · · · ∧ dxik with 1 ≤ i1 < · · · < ik ≤ n:∑

1≤i1<···<ik≤n
ai1···ik(x)dxi1 ∧ · · · ∧ dxik .

Notice that there are up to
(
n
k

)
nonzero terms in this sum and, in particular, when

k = n there is only one term.

For f ∈ C∞(M) = Ω0(M) and α ∈ Ωk(M) we have f ∧ α = fα.



The exterior derivative

There exists a linear operator d on Ω(M) which takes k-forms to (k + 1)-forms:
d : Ωk(M)→ Ωk+1(M). It is defined uniquely by the conditions

I d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ) for α ∈ Ωk(M),

I d(dα) = 0,

I df = ∂f
∂xi
dxi in local coordinates.

For a vector field X, we have df(X) = X(f).

For k-forms we have

d
( ∑

1≤i1<···<ik≤n
ai1···ikdx

i1 ∧ · · · ∧ dxik
)

=
∑

1≤i1<···<ik≤n
dai1···ik ∧ dx

i1 ∧ · · · ∧ dxik .

The importance of d comes from the fact that it is independent of the coordinate
system that is used.



Another formulation of Frobenius’ theorem

For a set {ω1, . . . , ωq} of 1-forms on M , let

kerp(ω1, . . . , ωq) = {v ∈ TpM | ωi(v) = 0 ∀i} ⊂ TpM

and let ker(ω1, . . . , ωq) = tp∈M kerp(ω1, . . . , ωq) ⊂ TM be the corresponding
subbundle. If dim kerp(ω1, . . . , ωq) is the same for each p ∈M , then the distribution
Π defined by Πp = kerp(ω1, . . . , ωq) is a regular distribution.

Theorem
Let Π = ker(ω1, . . . , ωq) be a distribution of the type described above. Then Π is
integrable if and only if dωi|Π = 0 for i = 1, ..., q.

In other words Π is integrable if and only if for each pair X,Y on which every ωi
vanishes we have dωi(X,Y ) = 0 for every i.



Frobenius’ theorem for distributions of hyperplanes
There is a special case when Π = ker(ω) for a single one-form with ω|p 6= 0 for every
p ∈M . Then Πp ⊂ TpM is an (n− 1)-dimensional hyperplane. In this case Frobenius’
theorem says that Π is integrable if and only if dω|Π = 0.

Theorem
The condition dω|Π = 0 is equivalent to ω ∧ dω = 0.

Proof.
ω ∧ dω = 0 if and only if ω ∧ dω(X,Y, Z) = 0 for any three vectors X,Y, Z. It is
sufficient to verify the statement for X,Y, Z satisfying ω(X) = ω(Y ) = 0 and
ω(Z) 6= 0*. In that case we have

ω ∧ dω(X,Y, Z) = ω(Z)dω(X,Y ).

*Note that if, for example, both ω(X) 6= 0 and ω(Z) 6= 0, then

ω ∧ dω(X,Y, Z) = ω ∧ dω(X,Y, Z) + ω ∧ dω(aZ, Y, Z) = ω ∧ dω(X + aZ, Y, Z), and you can always

choose a so that ω(X + aZ) = 0.



Contact structures

Definition
A regular distribution Π = ker(ω) on a (2n+ 1)-dimensional manifold M is called a
contact structure on M if ω ∧ (dω)n 6= 0. If such a structure is provided on M , we call
M a contact manifold.

For a regular distribution Π = ker(ω), we noticed that 2-form dω|Π can be interpreted
to measure the nonintegrability of Π. In particular, if dω|Π = 0, then Π is integrable.
The other extreme case is when the rank of dω|Π is equal to the rank of Π. This
means that for any nonzero vector field X there exists a vector field Y such that
ω(X,Y ) 6= 0, something that can only happen if the rank of Π is even (so M must be
odd). On a (2n+ 1)-dimensional manifold the condition that dω|Π is of rank 2n is
equivalent to ω ∧ (dω)n 6= 0. In this sense, contact distributions are maximally far
from being integrable.

Since contact structures are not integrable, they have no (2n+ 1)-dimensional integral
manifolds. Instead, their integral manifolds have at most dimension n.



The main example
Consider R2n+1 with the distribution Π = ker(du− pidxi). We already showed by
looking at the vector fields generating Π that it is not integrable. Let us now do it by
looking at the 1-form ω = du− pidxi. We have

dω = 0− dpi ∧ dxi − pi ∧ ddxi = dxi ∧ dpi.

Further, we have

ω ∧ dω = (du− pidxi) ∧ (dxj ∧ dpj) = du ∧ dxj ∧ dpj

which is not zero. The distribution Π is therefore not integrable. Since

(dω)n = n!dx1 ∧ dp1 ∧ · · · ∧ dxn ∧ dpn

we have

ω ∧ (dω)n = (du− pidxi) ∧ (dω)n = n!du ∧ dx1 ∧ dp1 ∧ · · · ∧ dxn ∧ dpn 6= 0.

This means that Π is a contact structure on M .



Integral manifolds of ker(du− pidx
i).

Let us find integral manifolds of dimension n. Let L be an integral manifold and
assume that we can take x1, ..., xn as coordinates on L. Then L is given by

u = f(x), p1 = g1(x), . . . , pn = gn(x).

We have

(du− pidxi)|L = df(x)− gi(x)dx =

(
∂f

∂xi
(x)− gi(x)

)
dxi.

The manifold L is an integral manifold if and only if (du− pidxi)|L = 0. In that case
all tangent vectors to L will be in ker(du− pidxi). Thus L is an integral manifold if
and only if gi(x) = ∂f

∂xi
(x) for i = 1, ..., n.

Integral manifolds of dimension n on a (2n+ 1)-dimensional contact manifold are
called Legendrian submanifolds.



Example: The jet space

For a function f ∈ C∞(Rn), let [f ]1a = f(a) + ∂f
∂xi

(a)(xi − ai) denote its degree 1
Taylor polynomial at a ∈ Rn (its 1-jet at a). Define

J1
a (Rn) = {[f ]1a | f ∈ C∞(Rn).

Since each 1-jet is determined by n+ 1 numbers (f(a), ∂f
∂xi

(a)) we see that
dim J1

a (Rn) = n+ 1. Let now J1(Rn) = ta∈RJ1
a (Rn) denote the (2n+ 1)-dimensional

space of all 1-jets (at any point). We may introduce coordinates xi, u, pi on J1(R):

xi([f ]1a) = ai, u([f ]1a) = f(a), pi([f ]1a) =
∂f

∂xi
(a).

This space is a bundle π1 : J1(Rn)→ Rn with projection given by π1([f ]1a) = a.



Example: The jet space

Any function f ∈ C∞(M) gives rise to a section j1f of π1 given by j1f(a) = [f ]1a
(notice that (π1 ◦ j1(f))(a) = π1([f ]1a) = a). In coordinates xi, u, pi, we have

j1(f)(x1, . . . , xn) = (x1, . . . , xn, f(x),
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)).

The space J1(Rn) comes equipped with a contact structure given by ω = du− pidxi,
or alternatively by the vector fields Dxi = ∂xi + pi∂u and ∂pi .

Let Lf = {j1(f)(x) | x ∈ Rn} ⊂ J1(Rn).

By the computations we did two slides ago, Lf are exactly the integral manifolds that
project surjectively to Rn. In this sense, the contact distribution on J1(Rn) filters out,
from the set of all sections of π1, the ones that are prolongations (lifts) of functions on
Rn.



A first-order PDE is a submanifold in J1(Rn)
Let us for concreteness consider the PDE ux1 + uux2 = 0. This PDE can be
considered as a submanifold

E = {p1 + up2 = 0} ⊂ J1(R2).

The significance of this submanifold is that if f(x1, x2) is a solution to ux1 + uux2 = 0,
then we have Lf ⊂ E for the submanifold Lf defined on the previous slide.

Take for example the solution u = x2

x1+1
of ux1 + uux2 = 0. Then

Lf =

{
u =

x2

x1 + 1
, p1 = − x2

(x1 + 1)2
, p2 =

1

x1 + 1

}
⊂ J1(R2).

We see that (p1 + up2)|Lf
= − x2

(x1+1)2
+ x2

x1+1
· 1
x1+1

= 0.

The contact distribution C = ker(du− p1dx
1 − p2dx

2) on J1(R2) is of rank 4. It
restricts to a distribution CEq = Cq ∩ TqE on E (here q ∈ E). Solutions of

ux1 + uux2 = 0 correspond to integral manifolds of the distribution CE on E .



A first-order PDE is a submanifold in J1(Rn)



The Lie Derivative of 1-forms

Let X be a vector field and α be a k-form. We define the interior product
iX : Ωk(M)→ Ωk−1(M) by

(iXα)(Y1, ..., Yk−1) = α(X,Y1, ..., Yk−1).

If β is an l-form, we have

iX(α ∧ β) = iX(α) ∧ β + (−1)lα ∧ iX(β).

Using this we can define the Lie derivative of a 1-form with respect to a vector field
through Cartan’s formula:

LX = diX + iXd.

The Lie derivative gives the rate of change along integral curves of X. It can actually
be defined for arbitrary tensors. In particular, for a function f and vector field Y , the
Lie derivative is given by LXf = X(f), LXY = [X,Y ].



The Lie Derivative of 1-forms

For example, let ω = du− p1dx
1 − p2dx

2 and X = x1∂u + ∂p1 . Then

iXω = x1, dω = dx1 ∧ dp1 + dx2 ∧ dp2

and

iX(dx1 ∧ dp1 + dx2 ∧ dp2)

= iX(dx1) ∧ dp1 − dx1 ∧ iX(dp1) + iX(dx2) ∧ dp2 − dx2 ∧ iX(dp2)

= −dx1.

We see that
LXω = (diX + iXd)ω = dx1 − dx1 = 0.

We say that X preserves the 1-form ω.



Contact vector fields
A contact vector field on a manifold M with contact structure Π is a vector field X
satisfying [X,Y ] ∈ Π for every Y ∈ Π. If Π = ker(ω) for a 1-form ω, the condition of
X being a contact vector field can be written as

LXω = λω

for some function λ ∈ C∞(M).

If ω = du− pidxi, then the general vector field satisfying LXω = λω is

XF = F∂u − Fpi(∂xi + pi∂u) + (Fxi + piFu)∂pi .

The function F is called the generating function of the contact vector field X. Let’s
write down some examples for different choices of F :

X−pi = ∂xi , Xu = u∂u + pi∂pi , X1−x1p2 = x1∂x2 + ∂u − p2∂p1 .

Exercise: Verify that these are contact vector fields by computing LXω.



A note on symmetries of PDEs
Consider again the PDE

E = {p1 + up2 = 0} ⊂ J1(R2).

Definition
An (infinitesimal) symmetry of E is a contact vector field that is tangent to E , i.e. a
vector field X satisfying X(p1 + up2)|E = 0.

Two of the contact vector fields from the previous slide are symmetries of E :

X−pi = ∂xi , X1−x1p2 = x1∂x2 + ∂u − p2∂p1 .

Their flows are transformations on J1(R2):

xi 7→ xi + t, (x2, u, p1) 7→ (x2 + tx1, u+ t, p1 − sp2)

We can use these transformations to transform the solution u = x2

x1+1
to other

solutions. For example, using the last of them gives the solution u = x2+tx1

x1+1
− t.



The thermodynamic identity

The fundamental thermodynamic identity is often written as

dU = TdS − PdV

where the variables U, T, S, P, V are called inner energy, temperature, entropy, pressure
and volume. It can be regarded as a statement of conservation of energy. In that
context dU, dS, dV is often talked about as “small changes” in these variables.

By rewriting the identity slightly we recognize a 1-form θ = dU − TdS + PdV . The
distribution ker(θ) is a contact distribution. The thermodynamic identity can be
reformulated by simply saying that a thermodynamical system is a 2-dimensional
integral manifold of the distribution θ on R5(U, T, S, P, V ).

Exercise: Verify that θ ∧ dθ ∧ dθ = 0.



Locally, all contact structures look the same

Theorem (Darboux)

Let ω be a contact form on M . Then there exist local coordinates
x1, . . . , xn, u, p1, . . . , pn such that ω = du− pidxi.



Exercises

1. Consider the distribution on R4 spanned by the vector fields ∂x1 , ∂x2 , e
x2∂x3 .

I Describe it as the kernel of a 1-form α = aidx
i. I.e. determine the coefficients ai.

Are they unique?
I Show that the distribution is integrable (using the vector fields, the 1-form, or both).
I Describe the integral manifolds.

2. Consider the space R4(x, u, p, q) with the distribution C = 〈∂x + p∂u + q∂p, ∂q〉.
I Describe the distribution as the kernel of two 1-forms.
I Is the distribution integrable?
I Is this a contact manifold?

(This space is J2(R), the space of 2-jets of functions on R. A function
f ∈ C∞(R) determines a section of J2(R) given by x 7→ (x, f(x), f ′(x), f ′′(x)).
Its image is a one-dimensional integral manifold of C. A second-order ODE can be
thought of as a 3-dimensional submanifold E ⊂ J2(R) and its solutions
correspond to integral curves of C ∩ TE .)
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