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Motivations

The mathematics of quantization are, widely, inspired in physics, of course. The
concept of ”quantization” and ”quantum systems” was born in physics at the
beginning of the 20th century. In those times, physics suffered a strong revolution that
reached mathematics in different ways. In particular, the mathematics of quantization
is an attempt to formalize the process of ”canonical quantization” used by physicist,
in, pretty much, the same fashion semi Riemannian Geometry is used to rigorously
study General Relativity. Now these ideas have its own sense in mathematics and have
gave place to new perspectives and techniques to study Geometry.
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Quantization in physics

One of the main differences we find in between Quantization in Physics and
Quantization in Mathematics is exactly the same we have in between Physics and
Mathematics themselves: Physics has ontological meaning, Mathematics is purely
logical. In Physics, a quantum system is a system of subatomic particles, and
”quantum physics” refers to the series of laws and principles that govern the
behaviour of subatomic particles. In the first try, physicist applied all they know of
classical mechanics to calculate trajectories and positions of the subatomic particles
but enormously failed. In short words, a completely new model, proposed by Max
Planck, to face these problems triumphed in every calculation and is considered the
first treatise ever in Quantum Physics. The key idea was to handle energy not as a
continuous but as little ”package” or ”quanta”, as he called it. This idea of treat
energy as quantum packets (more like discrete packets) solved the problem and open a
completely new branch of physics.
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In addition, one of the main features of these new ”quantum systems” is that now you
have to treat all classical observables as operators. And this is the key idea to
quantize in the canonical sense, just promote every classical observable to an operator
and include the Schrodinger Equation (like you introduce Newton’s Equation of force
in classical systems). More in detail, these operators act on a Hilbert space, so, what
we have done is take the algebra of classical observables of a classical system to an
algebra of operators in a Hilbert space, resulting in a quantum system.
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Poisson Geometry

To begin, let’s consider an associative algebra with unit A and introduce the bilinear
form

{, } : A⊗A → A

which satisfies, ∀ f , g , h ∈ A,

i) {f , g} = −{g , f } (Antisymmetry)

ii) {f , {g , h}}+ {h, {f , g}}+ {g , {h, f }} = 0 (Jacobi’s identity)

iii) {f , gh} = g{f , h}+ h{f , g} (Leibniz rule)

The bilinear form {, } is called Poisson Bracket. Worthy remarkable, due to properties
i) y ii), {, } it is, also, a Lie Bracket, then we can say that a Poisson Bracket is a Lie
Bracket that satisfies Leibniz rule.
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Then, a Poisson Algebra is the pair (A, {, }).

In particular, a Poisson Bracket defined over C∞(M) for some manifold M is usually
called Poisson structure.

Definition. (Poisson manifold)

A manifold M equipped with a Poisson structure {, } is called Poisson manifold.

What we are doing here is to introduce {, } over the algebra of smooth functions of
the manifold. To this point we have done nothing but introduce language. What is
the main interest to give such definitions at all? The quickest answer is: Hamilton
Equations.
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Property iii), also known as derivation rule, implies that {f ,−} induce a vector field.
Thus, we define

Definition.(Hamiltonian vector field)

XH := {H,−}
XH is called Hamiltonian vector field of the Hamiltonian H.

The canonical example over R2n with coordinates {q1, . . . , qn, p1, . . . , pn} is to define

the Poisson Bracket by {f , g} ≡
n∑

i=0

( ∂f
∂qi

∂g

∂pi
−
∂f

∂pi

∂g

∂qi

)
Then, XH =

n∑
i=0

( ∂H
∂qi

∂

∂pi
−
∂H

∂pi

∂

∂qi

)
and Hamilton Equations are written as

q̇ =
∂H

∂p
, ṗ = −

∂H

∂q

This is, the differential equations defined through the Hamiltonian vector field are the
Hamilton equations, then (q(t), p(t)) is an integral curve of XH iff the equations are
satisfied.
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In addition, we have, ∀f ∈ C∞

df

dt
= {f ,H}

So we can express Hamilton equations as

q̇ = {q,H}, ṗ = {p,H}



A bridge in between Poisson Geometry and Noncommutative Geometry through quantization processes.

Another important aspect of the Poisson structure becomes evident when we notice is
possible to define non degenerate Poisson Brackets, this is

∀g ∈ C∞(M) {f , g} = 0⇔ f = 0

So we can define Poisson Brackets through symplectic forms as

{f , g} = ω(Xf ,Xg )

Then, any symplectic manifold1 is Poisson.

1Remember a symplectic manifold is a manifoldM equipped with a non degenerate, antysymmetric, 2-form ω
we call symplectic form.
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Noncommutative Geometry

To begin this section let me introduce a very important theorem used in Algebraic
Topology. Start by considering a topological space X .
Is not hard to prove that the set of analytic functions C∞ = {f | f : X → C} satisfy:

i) Forms a Banach space with || f ||∞= sup({| f (x) || x ∈ X}) (supremum norm)

ii) Forms a commutative algebra with unity with the pointwise product of functions.

(fg)(x) = f (x)g(x)

iii) They posses an involution, for this case, given by the usual conjugation of
complex numbers.

∗ : C∞(X )→ C∞

f 7→ ∗(f ) ≡ f ∗(x) := f (x)

This is,they form an involutive Banach algebra2, also known as C∗-algebra.

2Not forgetting that || f ||2∞=|| f ∗f ||∞
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The main idea is based on take the algebra of functions over the topological space and
notice that it has a C∗-algebra structure. In addition, if we change the perspective
and we take some C∗-algebra, the set of characters

χ : G → K

can be promoted to a topological space.
We should remember that any algebra (including C∗-algebras) has a underlying vector
space. Then, a representation of some group G in V is a function T : G → Aut(V )3.
Thus, a character is the function that assigns elements of the group with elements of
the field through χ(g) = Tr(T (g)) (the trace of the representation of g). This set of
characters does admits non trivial topologies and, because of that, it is said that we it
can be promoted to a topological space.

3Usually, it is defined over GL(V), the set of invertible endomorfisms, this is, the automorphisms.
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In our example, the field is C; then, it is possible to prove that the set of characters
associated to the C∗-algebra induced by C, promoted to a topological space (with the
weak topology-*) is identified with the original space X , specifically, with its algebra of
analytic functions.

This correspondence in between topological spaces and C∗-algebras is the idea behind
the Gelfand duality theorem, which writes

Theorem. (Gelfand duality)

The pair of functors
C∗Algopp

comm � Topcpt

is an equivalence of categories.

Here, C∗Algopp
comm stands for the opposite category4 to C∗Algcomm, which is the

category of commutative C∗-algebras. And Topcpt is the category of compact
topological spaces.

4The opposite category is the same category but with the morphisms inverted, f : A→ B now is f : B → A.
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This theorem allow us to make an identification in between topological properties and
algebraic properties, as is shown in the table here below

Topology C∗-algebra
Locally compact topological space Commutative C∗-algebra

Continuous functions Algebra homomorphisms
Compactness Existence of an identity
Disjoint union Direct sum

Cartesian product Tensor product
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With this formalism on the ground, finally, we can talk about the brilliant idea that
Alain Connes had of research what kind of topological spaces could be related to non
commutative C∗-algebras, for instance, something we can call non commutative
topological space. As well, has become common call them quantum groups. This is
the main idea behind Noncommutative Geometry, to study this topological spaces
associated to non commutative algebras of functions.

A simple way to think about it is remember when we were in elementary and we learn
Analytic Geometry. In those times we were capable of deduce the geometric properties
of a curve and how does it look in the plane just by taking a look to the associated
algebraic equation. Same happened when we look a curve in the plane and we could
know the roots of the associated equation, among others algebraic aspects; this is,
from algebraic information we deduced geometric information, and vice versa.
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Quantization

Plausibly, those initiated in Quantum Mechanics have grasp the idea of the bridge
that exist in between Poisson Geometry and Noncommutative Geometry. The reason
why noncommutative spaces are often labelled as ”quantum” is because it is possible
to construct them by means of quantization.
Symplectic Geometry, in general, Poisson Geometry is widely used to study classical
physical systems5. This study is based in the algebra of commutative functions over
the manifold, C∞(M). Nevertheless, in Quantum Mechanics Hilbert spaces and self
adjoint operators are used, whose algebra is, essentially, non commutative.

5In fact, a big part of the development of this theory is due to the work in classical mechanics.
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Dirac noticed, time after his first formulation of Quantum Mechanics, that the
algebraic description given by the Poisson Brackets over a manifold M is crucial to
understand the process of quantization. In particular, he contrasted the algebra of
operators, which is non commutative, over a Hilbert Space H with the algebra of
functions over the manifold in such a way that quantization must be understood as a
morphism that takes functions on the manifold and gives operators in a Hilbert space,
this is, a relation in between algebraic structures.This way, we can understand the
algebra of self adjoint operators in a Hilbert space as the non commutative maximal
space associated to the algebra of functions in the symplectic manifold. By doing this,
Dirac gave a series of conditions that must be taken as starting point to any
quantization theory.

Q : C∞(M)→ End(H)

i) R-lineality Q(rf + g) = rQ(f ) + Q(g)

ii) Normalization Q(1) = 1H

iii) Hermiticity Q(f )∗ = Q(f )

iv) Dirac quantization condition: [Q(f ),Q(g)] = −i~Q({f , g})
v) Irreducibility: If {fk}nk=1 is a complete set of functions, then {Q(fk )}nk=1 is a

complete set of operators.
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In Deformation Quantization, the algebra C∞(M) is replaced by the algebra
A~ ≡ C∞(M)[~] of power series in ~ of elements of A~. Then, f ∈ A~ has the form

f =
∞∑
k=0

~k fk

This idea is motivated in analogy to the concept of symbol6 in the theory of pseudo
differential operators. A deformation is the pair (A~, ?) where

? : A~ ⊗A~ → A~

Two very specific examples of this process are the Clifford Algebra which can be seen
as the deformation of the Exterior Algebra, and the Weyl Algebra which can be seen
as the deformation of the Symmetric Algebra

6A symbol is a polynomial that represents a differential operator, giving place to pseudo differential operators.
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Final Remarks

The the starting point of any classical theory of physics is the triplet (A, {, },H), with
A = C∞(M). The starting point in Noncommutative Geometry is the spectral triple
(C∗,H,D), where C∗ is an involutive algebra and H is a Hilbert space, together with
the self adjoint operator D. Both, linked via quantization map. This is, the
deformation of the algebra of smooth functions in a Poisson manifold corresponds
with a noncommutative space, also called, quantum group. From this now we know
why some authors talk about QuantumGeometry , just a different name for
Noncommutative Geometry.
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