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Lecture IV Primary visual cortex
1.Retinotopic conformal map from retina to LGN and V1 cortex
2.Architecture of V1 cortex (minicolumnes and columns , simple
and complex cells, �eld of directions. pinwheels)
3. Shift of receptive �elds and etc Principly by E. Gombrich.
4. Contact Petitot model of V1 cortex and Legendrian lift.
5.Hypercolumns. Hubel-Wiesel de�nition of a hypercolumn.
6. Bresslo�-Cowan spherical model of hypercolumn.
7. Symplectic Petitot -Citti-Sarti model of V1 cortex and
parametrisation of set of simple cells by the similarity group
Sim(R2).
8. Lift of input function to similarity group and R. Duits theory of
score. Generalisation.
9.Uni�cation of Bresslo�-Cowan and Petitot-Citti-Sarti models.
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Retinotopic (topographic)map from retina to LGN
(lateral ginicular nuclea) and visual cortex VI

(Schwarz) The map is conformal and is given by a function of the
form

z 7→ F (z) = log
z + a

z + b
.

The module |F (z)| is the magni�cation.
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Architecture of visual cortex VI: Columns, �eld of pinweels,
simple and complex cells, hypercolumns.

1.Primary visual cortex V 1 is a surface of depth 1.5-2 mm which
consists of 6 layers. Each layer consists of columns of cells which
has approximately the same receptive �eld.
2.Hubel and Wiesel proposed a classi�cation of VI cells into simple
and complex cells.
3. Simple cell acts as Gabor �lter (anisotropic Gauss �lter). All
simple cell from a (regular) column at a point z ∈ V 1 acts as
approximately identical Gabor �lters with center at the
corresponding point z ∈ R and detect contour through point z with
�xed "orientation"(i.e. direction on retina R , measured by the angle
θ ∈ [0.π) (up to 15-20 %) ).
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Pinweels

4. The �eld of orientations ( =directions ) de�nes a 1-dimensional
distribution Γ = ker η, η ∈ Ω1(S2). The 1-form η has many isolated
singularities (called pinwheels) - points where η = 0. Corresponding
singular column contains simple cells of any orientation and hence a
singular column detects a contour with any orientation. So singular
columns acts as a watch towers.
5. One of the aim of eyes movement is to produce the shift of the
image on retina such that contours intersect pinwheels and will be
detected by more cells.
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Pinwheels
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Field of directions with hexagonal symmetry, which is a solution of
generalized Swift-Hohenberg equation (F. Wolf et al.)

Pinwheels and hexagonal lattice
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Pinwheels and horizontal connections
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Shift of RF and remapping (Jean-Rene Duhamel; Carol L.
Colby; Michael E. Goldberg,1992)

In a seminal paper, Duhamel et al. described the shift or RF of
many neurons in macaque lateral intraparietal area (LIP).
Assume that the RF of a neuron before saccade covers the retina
image Ā of a point A and after a saccade the retina image Ā′ of
another point A′. Then 100 ms before a saccade, the neuron
detects stimuli at the locations Ā′.
This process constitutes a remapping of the stimulus from the
retina coordinates with the initial �xation point to those of the
future �xation point . The process is governed by a copy of the
motor command (corollary discharge)
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Remapping of retina images
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Fixation �elds after �rst 6 saccades
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The etcetera principle by art historian Ernst Gombrich

The global pattern in environments such as a forest, beach or street
scene enables us to predict more-or-less what we will see, based on
the order and redundancy in the scene and on previous experience
with that type of environment.
( Recall a presentation of a walking person in low cost cartoon).
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Remapping as a conformal transformation

Realisation of the Gombrich principle. Remapping as a conformal
transformation.
We will use the Moebius projective model of the eye sphere as the
projectivisation S2 = PV0 ⊂ PV of the isotropic cone V0 of the
Minkowski space V .
The central projection

πF : PV → S2,A 7→ `(A,F ) ∩ S2

is de�ned as the point of intersection ofthe line `(A,F ) with sphere
, di�erent from F .
The Lorentz group SO(V ) is the group of projective
transformations of PV which preserves the sphere S2 = PV0
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Note that in coordinate system, �xed w.r.t. the eye sphere, a
saccade corresponds to an a�ne transformation ρ ∈ SO(V ) of PV
( rotation) which preserves S2 (but does not preserve F ).It maps a
plane Π , de�ned by three points Ai ∈ PV , i = 1, 2, 3 to a plane Π′

de�ned by by points A′i = ϕ(Ai ). Let πF : PV → S2 the cental
projection and (̄Ai ) = πF (Ai ), (̄Ai )

′ = πF (A′i ) are images of these
points on retina before and after a saccade.
There exists unique Lorents transformation ϕ of the projective space
PV which preserves the eye sphere and the point F ∈ S2 such that

ϕ(Π) = Π′, ϕ(Ai ) = A′i .

It is determined by its restriction to S2 which is the unique
conformal transformation with transforms the images Āi := πF (Ai )
of points before and after saccade and describe the remapping of
the retina image after saccade.
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Petitot's model: primary cortex as a contact bundle

In 1989 , W. Ho�man stated that the primary visual cortex is a
contact bundle .
The realization of this idea was done by J. Petitot.
Under approximation that all points are centers of pinwheel,
J.Petitot concludes that points of VI cortex are parametrized by the
"orientation"i.e. directions in the retina sphere S2, i.e. points of the
projectivised (co)tangent bundle PT ∗S2 = PTS2. It is the contact
bundle of S. Lie with the natural contact structure
D = π∗kerθ ⊂ PT ∗S2, which is de�ned by the projection
π : T ∗S2 → T ∗S2 of the canonical distribution kerθ ⊂ T (T ∗S2).
Here θ = pidq

i , θξ(X ) = ξ(π∗)(X ) is the tautological Liuville
1-form on T ∗S2. Simple cells in V1 cortex detect the orientation
(= directions ) of a contour. So they determine the (Legendrian)
lift of the contour to the horizontal curve C̄T ⊂ PT ∗(S2).
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Petitot's model

So, according to Petotot model, VI cortex is the contact bundle
PTS2 with the canonical contact structure and simple cells
determine the Legendrian lift of contours in S2 to PT ∗S2.
If (x , y) are coordinates in retina S2 such that contours are
described as y = y(x), then the contact manifold PTS2 can be
locally identi�ed with the manifold J1(R) of 1-jets of functions with
coordinates (x , y , p = dy

dx ) and the contact form Θ = dy − pdx .
The contact manifold J1(R) is identi�ed with the Heisenberg group
Heis3 or with the group E (2) = SO2 · R2 of Euclidean motions of
the plane with left invariant contact structure.
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Symplectic model by Petitot-Citti-Sarti

A natural generalization of the Petitot's model was proposed by
G.Citti, A.Sarti,and J.Petitot. They assume that a simple cell is
characterized not only by the point z ∈ R ⊂ S2 ( the center of the
receptive �eld) and the orientation θ, but also by scaling σ - the
intensity of the reply on the same stimulus.
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Sarti-Citti-Petitot's model: VI as a principal CO2 bundle

Then the space of simple cells in VI cortex (= Gabor �lters) are
parametrized by the similarity group
B− = Sim(E 2) = R+ · SO2 · R2

− = G0 · G− where z = (x , y) ∈ G−
indicates the center of a Gabor �lter, θ ∈ SO2 its orientation and
σ ∈ R+ is the scale - the intensity of reply. Locally this space can
be identi�ed with the cotangent bundle T ∗S2 or the principal
G0 = CO2 = R+ · SO2-bundle of conformal frames over S2 with the
standard symplectic structure.
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Hypercolumns of Hubel-Wiesel

Huble and Wiesel proposed a deep and very productive notion of
hypercolumns in V1 cortex. Given a system of local parameters (
for example, orientation and ocular dominance or orientation and
spatial frequency). A hypercolumn ( or, module) is de�ned as a
minimal collection of ( regular) columns, containing simple cells
which measure any possible value of these parameters and which is
su�cient to detect the local structure of an image.
Applying this notion to orientation and ocular dominance , they
proposed a famous ice cube model of V1 cortex. Now this notion is
applied also for V2 cortex.
Usually, the area of hypercolumns is 1− 2mm2.
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Spherical model of hypercolumn by Paul Bresslo� and Jack
Cowan

Bresslo� and Cowan considered a parametrisation of simple cells by
two parameters:
orientation θ and spatial frequency p ∈ [pL, pH ], and proposed a
model of hypercolumn as a sphere associated with two pinwheels
S ,N , which correspond to local minimum and local maximum of
the spatial frequency p.
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Spherical model of hypercolumn by Paul Bresslo� Ð¸ Jack
Cowan
Hypercolumns as spheres.

More precisely, they introduce the normalized logarithm
σ = π log(p/pL)

log(pH/pL)
− π/2 of the space frequency as a new parameter

and propose to consider this parameter σ together with the
orientation θ as spherical coordinates - latitude and longitude on a
sphere, which represents a hypercolumn. Two pinwheels
corresponds to north N and south S poles of the sphere where the
latitude σ take value π/2 and −π/2 respectively and the spatial
frequency take maximal and minimal values. In these points, the
longitude = orientation is not de�ned. It is consistent with the fact,
that the orientation is not de�ned in pinwheeels, since there are
simple cells which measure contour of any orientation.
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Evolution of an excitation in a hypercolumn

Evolution of an excitation in a hypercolumn is described by the
Wilson-Cowan's equation

∂tu(θ, σ, t) = −u(θ, σ, t)+

∫ π

0

∫ π

0
W (θ, σ|θ′, σ′)ρ(u(θ′, σ′, t))dν+h(θ, σ)

where W is the density of interaction between two hypercolumns, ρ
is a sigmoidal function , h is a stimulus from LGN.
The authors assume that the weight function W ∈ C∞(S2 × S2) is
SO3-invariant. Then it can be described in terms of spherical
harmonics ( a sum

∑∞
n=0Wn

∑n
−n(Ym

n )∗(θ, ϕ)(Ym
n )(θ′, ϕ′) of

products of spherical harmonics). The simplest example is a
function of the Riemannian distance.There is no argument why the
sphere-hypercolumn must have a standard SO3-invariant
Riemannian metric. So at the end of the paper, the authors consider
a generalization of the model to the case of non invariant metric.
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Uni�cation of Bresslo�-Cowan and Petitot-Citti-Sarti models

We propose a modi�cation of the Bresslo�-Cowan model of
hypercolumn and consider a model of hypercolumn with spherical
coordinates θ (orientation) and ϕ ( de�ned by Bresslo�-Cowan
function of spatial frequency) as a conformal sphere . Consider the
Riemann model of conformal sphere S2 = Ĉ with two distinguished
points S = 0 and N =∞ and complex coordinate
z = x + iy ∈ S2 \ {∞} and w = 1

z ∈ S2 \ {0} and the action of
the conformal group G = SL2(C) = G− · G 0 · G+. The stability
subgroups are GS = B+ = G 0 · G+, GN = B− = G− · G 0. The
points S = {0},N = {∞} correspond to pinwheels, which give
minimum and maximum values of the spatial frequency p.
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The stability subgroup GN = B− = G− · G 0 ' Sim(E 2) acts
transitively on S2 \ N and acts on the tangent space TSS

2 of the
south pole via stereographic projection as the group of homotheties
z 7→ az + b with generators ∂x , ∂y , x∂y − y∂x ( rotation) and
z∂z = x∂x + y∂y ( dilatation). According to Petitot-Citti-Sarti
model, we may parametrize (locally) simple cells in the
neighborhood of the point S by this group (i.e. parallel translations,
rotations and dilatations). Such neurons detect images with low
level of spatial frequency.
Similarly, neurons in a neighborhood of the north pole N are
parametrized ( locally) by the points of the stability subgroup
GS = B+ = G 0 · G+ ' Sim(E 2). They detects images with high
level of spatial frequency. Note that the orbit of 1-parameter
subgroup R+ generated by dilatation z∂z = x∂x + y∂y of the
sphere are meridians ( that is coordinate lines of ϕ or spatial
frequency p ) and orbits of subgroup S1 of rotation corresponds to
parallels of the sphere ( coordinate lines of orientation θ.)
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Stereographic projection
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Application to stability problem. Principle of invariancy

We will state the following general principle of invariancy:
Let G be a group of transformations of a space V and O = Gx an
orbit. If observers are distributed along the orbit O, the
information, about some process, which they detect and send to
some centre is invariant w.r.t. the group G .
Probably, the simple cells of a hypercolumn near S send the
information to singular pinwheel column S (center of low spatial
frequency images) and cells near N send information to pinwheel N
( the center of high frequency).
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Application to stability problem

The system of simple cells of a hypercolumn S2 is invariant w.r.t.
subgroup G 0 = GS ∩ GN = B− ∩ B− = CO2 = S1 × R+. Assume
that a local retina image remains inside hypercolumn during
�xation eye movements. Then the information, which is detected by
all simple cells of a hypercolumn and send to the next level, is
invariant with respect to the group G 0.
Moreover, the information about retina images which contain in
simple cells near S , is invariant with respect to the group B− since
these cells are (locally) parametrized by this group .
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We conjecture that the invariancy with respect to the group
G− ' R2 of parallel translation is realized on the next level of visual
system (where complex cells become important)).
It is consistent with a known fact that one of the principal
di�erence between simple and complex cells is that the excitation of
simple cells is not invariant with respect to the shift of the contour,
but the excitation of complex cells is invariant with respect to such
shift, ( see for example, M. Hansard, R. Heraud, A di�erentail
model of complex cells,2011).
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Primary cortex as a Cartan connection

Note that in model of Petitot-Citti-Sarti, "points"of retina are
pinwheels. In model by Bresslo�-Cowan, "points"are hypercolumns,
which are associated with a pair of pinwheels (S ,N). An image
with low level of spatial frequency, is detected by a system of
columns near the south pole S , which is (locally) parametrized by
points of the group B+ ' Sim(E 2). In other words, "points"with
low spatial frequency corresponds to stability subgroups B−

associated with the north"pinwheel N of the hypercolumn sphere.
Similarly, "points"with high spatial frequency is detected by
neighborhood of the north pinwheel N of the hypercolumn . This
leads to a description of V1 cortex as the Tits model of the
conformal sphere , where "points"are stability subgroups. The
associated Cartan connection gives a canonical B− -equivariant
identi�cation of in�nitesimal geometric structure in di�erent points.
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