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Plan of the lecture

(1) Recollection of facts and notations.

(2) Examples of non-semisimple modules.

(3) Canonical filtration of modules.

(4) Composition series.

(5) Modules over finite groups.

(6) Group rings and algebras.

(7) Decomposition of group algebras.



Let is recollect some important definitions and statements from
the previous two lectures.

Rings and algebras.
(*) A ring (an algebra) is simple if it does not contain nontrivial

ideals;
(*) semisimple if it is a direct sum of simple subalgebras
⇐⇒ a direct sum of simple (minimal) ideals.

General problem in representation theory.
(*) Classify representations/modules over a group (ring, algebra)

up to isomorphisms.



Modules.
(*) A module is called simple if it does not contain non-trivial

submodules; such a representation is called irreducible .
(*) Schur’s Lemma : any morphism between simple modules is

either an isomorpism or zero. The set of endomorphisms
of a simple module (the commutant of an irreducible
representation) is a division ring (algebra).

(*) A module is called semisimple if any of the following three
equivalent properties holds:
(i) it is a sum of simple submodules,
(ii) it is a direct sum of simple submodules,
(iii) every its submodule is a direct summand.

(*) The decomposition into the direct sum of simple modules,
semisimple decomposition , is unique up to isomorphisms.



(*) Any submodule of a semisimple module is semisimple.
(*) A module V over a ring R− is called faithful , if
R → Endk(V) is injective.

Theorem (Wedderburn).

Let V be a simple faithful module over R, D be the commutant.
Then R = EndD(V).

Corollary.
(i) Every simple finite-dimensional k−algebra A is isomorphic

to a matrix algebra over some division k−algebra.
(ii) In particular, if k is algebraically closed then A is isomorphic

to Mn(k) for some n.



Not every module is semisimple.

Examples.
• Take M = Z as a module over R = Z, N = 2Z as a

submodule. The quotient module is Z2 = Z/2Z.
All elements of the quotient have order 2. On the other hand,
every non-zero element of Z is of infinite order, thus the
embedding Z2 ⊂ Z is not possible and 2Z ⊂ Z is not a
direct summand.
• R = k[x] for a field k,M = k[x], N = x2k[x].

The image of x under the projection map M → M/N is
annihilated by the action of x.M does not possess elements
with this property, therefore the embedding of the quotient
intoM is not possible and hence N is not a direct summand.



• R = C[x], V = C2, such that

x 7→ A =
(
λ 1
0 λ

)
, λ ∈ C

W = (C, λ) is a submodule (the generator x acts by
multiplication on λ). The quotient module is again (C, λ).
If W was a direct summand then A would have been
conjugated to λ id, which is not the case.
Here we have a filtration of the module by submodules

0 ⊂ (C, λ) ⊂ C2 → (C, λ)→ 0

such that each quotient is simple.
Notice that (C, λ) is the only simple submodule of C2



Proposition.
For any module V, there is a canonical ascending filtration by
submodules

{0} ⊂ V(0) ⊂ V(1) ⊂ V(2) ⊂ . . . ⊂ V(r) ⊂ . . . ⊂ V

such that each quotient module V(i)/V(i−1) is semisimple.

Proof.
(1) Let V(0) be the sum of all simple submodules, i.e. each vector

in V(0) is a finite sum of elements, belonging to one of the
simple submodules. It is semisimple.

(2) Repeat the same procedure for the quotient module V/V(0):
take the sum of all its simple submodules; V(1) is the
preimage of the latter under the projection map V→ V/V(0).

(3) Continue by induction.



Remark.
The quotients of the canonical filtration does not determine the
representation uniquely: there might exist modules V and V′,
such that V(i)/V(i−1) ' V′(i)/V

′
(i−1) for for all i, but V and V′

are not isomorphic.

Example (two non-isomorphic representations with
isomorphic quotients).

Any representation of the ring of polynomials of two variables
R = k[x, y] on a k−vector space V is uniquely determined by
the image of generators B and C, such that x 7→ B, y 7→ C and

k[x, y] 3 p(x, y) 7→ p(B,C) ∈ End(V)

The only requirement: B and C must commute.



Consider R−modules (k2,Bα,Cα), α = 1, 2, with

B1 =
(
λ1 0
0 λ1

)
, B2 =

(
λ1 1
0 λ1

)

C1 =
(
λ2 1
0 λ2

)
, C2 =

(
λ2 0
0 λ2

)
for distinct λ1, λ2 ∈ k.
All quotient modules associated to the canonical filtration in
both cases are isomorphic to (k, λ1, λ2), where

k[x, y] 3 p(x, y) 7→ p(λ1, λ2) ∈ M1(k) ' k

However, the two representations of R are not isomorphic: B1 is
a scalar multiplier of the identity, while B2 is not, so these
operators can not be conjugated by any module isomorphism.



Irreducible representations of the algebra of polynomials
over an algebraically closed field.
Any irreducible finite-dimensional representation of k[x1, . . . , xn]
is of the above form.
Indeed, let Ai be the generators, such that xi 7→ Ai, i = 1, . . . , n.
We require that all Ai are commuting.
Take the space Vλ1 of eigenvectors for A1 corresponding to an
eigenvalue λ1; since A1 and Aj, j = 2, . . . , n are commuting,
every Aj preserves Vλ1 .
Take the subspace Vλ1λ2 ⊂ Vλ1 of eigenvectors for A2 in Vλ2

corresponding to some eigenvalue λ2 of A2 and then proceed by
induction.
At the end of day we obtain the joint eigenspace Vλ1...λn , which
is the direct sum of simple modules (C1, λ1, . . . , λn), on which
every xi acts by multiplication on λi.



Definition.
A series for a moduleM is a strictly decreasing sequence of
submodules

M =M0 ⊃M1 ⊃ . . . ⊃Mn = {0}

beginning withM and finishing with {0}.
The length of this series is n. In general, the length is allowed to
be infinite.
A composition series is a series in which no further submodule
can be inserted. This is equivalent to saying each composition
factor (the quotient module)Mi/Mi+1 is simple.



Given a composition series F for a moduleM, denote by
S(M,F) the set of all (not necessarily distinct) simple factors.
Then the length of the series is the cardinal number of S(M,F):

l (M,F) = | S(M,F) |

Let N ⊂M be a submodule, L =M/N be the quotient
module.
Consider the following decreasing filtrations, induced by F:

Ni = N ∩Mi, Li = im (Mi → L =M/N )

It is possible that Ni = Ni+1 or Li = Li+1 for some i.
By getting rid of repeated submodules, we obtain two series FN
and FL for N and L, respectively.



Proposition.
(i) FN and FL are composition series.
(ii) S(F,M) = S(FN,N ) ∪ S(FL,L)

Proof.
There is a short exact sequence of modules for each admissible i

0→ Ni/Ni+1 →Mi/Mi+1 → Li/Li+1 → 0

Each factorMi/Mi+1 is simple, thus by Schur’s Lemma either

Ni/Ni+1 = 0, Mi/Mi+1 ' Li/Li+1

or
Ni/Ni+1 'Mi/Mi+1, Li/Li+1 = 0

Therefore all factors in FN and FL are simple and (ii) holds true.



Lemma.
Assume thatM is a semisimple module with a finite semisimple
decomposition. Then:
• There is a finite composition series ofM.
• Every composition series is of such a form for some

semisimple decomposition.

Proof.
• Assume that M is a direct sum of simple submodules
{S0, . . . , Sn−1}. Take the following decreasing filtration

M0 =
n−1⊕
j=0

Si ⊃M1 =
n−1⊕
j=1

Si ⊃ . . . ⊃Mn−1 = Sn−1 ⊃Mn = 0

By construction, every factor is simple, Mi/Mi+1 = Si for
i = 0, . . . , n− 1, hence it is a composition series.



• IfM is semisimple, any submodule is a direct summand,
thus every composition series splits: denote Si =Mi/Mi+1
for i = 0, . . . , n− 1, then

Mi =Mi+1 ⊕ Si

Therefore we obtain a decomposition ofM into the direct
sum of simple submodules {S0, . . . , Sn−1}, such that the
composition series is of the above form.

Definition.
We will say the canonical increasing filtration of a module is
finite if the number of all simple direct summands, which appear
in semisimple decomposition of factors, is finite. We call them
associated simple factors.



Proposition.
(i) The canonical increasing filtration of a module is finite if

and only if the module admits a composition series of finite
length.

(ii) Then there is a one-to-one correspondence between simple
factors of the composition series and associated simple
factors of the canonical filtration.

Proof.
Assume that the canonical decomposition is finite. Then one can
built up a finite composition series out of the canonical filtration
with the required property (ii).



We start with a composition series for a semisimple submodule
M(0) as in the above lemma.
The next step - we enrich the obtained decreasing filtration by
adding of modules from the "next levels".
Eg. assume that S is a direct summand of a semisimple
decomposition for the quotientM(1)/M(0). Then we add its
preimage under the projection map π(1) ofM(1) onto the
quotientM(1)/M(0)

π−1 (S) ⊃M(0)

and then continue by induction until we get a decreasing
filtration ofM with all simple factors.



If there exists a composition series F ofM of finite length n, we
shall prove by induction that the canonical filtration is finite
and (ii) is satisfied. The canonical filtration ofM induces the
canonical filtration of the quotient byM/M(0).
Now it is sufficient to consider the associated composition series
forM(0) andM/M(0) and use the induction hypothesis, as the
length of the induced composition series of submodules is
strictly less than the length of the composition series of the
whole module.

Corollary.
If the composition series F is finite, then
(i) S(M,F) and l (M,F) are independent on the choice of

composition series. This allows us to omit the letter F in
the corresponding notations.

(ii) For any submodule N ⊂M one has

S(M) = S(N ) ∪ S(L), l (M) = l (N ) + l (L)



Modules over finite groups

There are special classes of groups for which every linear
representation decomposes into a direct sum of irreducible
representations; in other words, any module is semisimple

V =
⊕

ρ∈Irrep(G)
rρVρ, rρ ∈ Z≥0

Finite groups (compact groups, in general) are of this type.

Orthogonal and unitary representations
Let V be a real orthogonal (a unitary) G−module, i.e. V is a
Euclidean (Hermitian) vector space, such that G acts by
orthogonal (unitary) linear transformations. Then the
orthogonal complement to each submodule is again a
submodule, which implies that the module is semisimple.



Theorem.
Let G = {g1, . . . , gn} be a finite group and V be a real
(complex) linear G−module of finite dimension. Then there
exists a G−invariant Euclidean (Hermitian) scalar product on
V, i.e. a positive definite symmetric bilinear (sesquilinear) form

(, ) : V ×V→ V

such that (gv1, gv2) = (v1, v2), for all g ∈ G, v1, v2 ∈ V.

Proof.
Step 1. Take any Euclidean (Hermitian) scalar product on V. It is

not G−invariant, in general.
Step 2. Replace (, ) with a new scalar product (, )G

(v1, v2)G = 1
n
∑
g∈G

(gv1, gv2), ∀v1, v2 ∈ V



The obtained scalar product is:
(a) Positive definite. Indeed, for each non-zero v, (v, v) > 0.

The sum of positive numbers is again greater than 0,
therefore (v, v)G > 0.

(b) G−invariant: for any g′ ∈ G, v1, v2 ∈ V, one has

(g′v1, g′v2)G = 1
n
∑
g∈G

(gg′v1, gg′v2) = 1
n
∑
g∈G

(gv1, gv2)

since the sets {gg′ | g ∈ G} and {g | g ∈ G} coincide. Hence

(g′v1, g′v2)G = (v1, v2)G

Corollary.
Every real (complex) linear representation of a finite group is
orthogonal (unitary) with respect to some metric.



Definition.
For any module V over a finite group G, there is an operator

V 3 v 7→ TrG(v) = 1
|G|

∑
g∈G

gv

called the averaging over elements of G.

Lemma.
TrG is a projector onto the submodule of G−invariant vectors.

Proof.
We use the trick as above to show that TrG(v) is G−invariant
for any v ∈ V.
If v is already an invariant vector, then

TrG(v) = 1
|G|

∑
g∈G

gv = 1
|G|

∑
g∈G

v = v

thus TrG is a projector onto VG = {v ∈ V | gv = v, ∀ g ∈ G}



Example.
V is a module over a group G.
G acts on k−linear maps V→ V by conjugation:

gψ = g ◦ ψ ◦ g−1 g ∈ G, ψ ∈ Endk(V)

This action obviously respects the composition of maps, i.e.

g (ψ1 ◦ ψ2) = g(ψ1) ◦ g(ψ2), ψ1, ψ2 ∈ Endk(V)

By construction, a linear map ψ is G−invariant, ψ ∈ Endk(V)G,
if and only if it commutes with all elements of G:

gψ = ψ ⇐⇒ g ◦ ψ ◦ g−1 = ψ ⇐⇒ g ◦ ψ = ψ ◦ g



Theorem (Maschke).

Every finite-dimensional representation of a finite group G over
a field k with characteristic not dividing the order of G is
semisimple

Proof.
Let V be a G−module, W be a submodule. Denote by σ the
inclusion map W ↪→ V. It is a morphism of G−modules.
Take any complementary vector subspace W′ ⊂ V and denote by
π the corresponding projection onto W. One has π ◦ σ = IdW.
In general, W′ is not a submodule. Replace π with φ = TrG(π);
now φ is G−invariant, thus it is a morphism of G−modules.
φ is not necessarily a projector, but Kerφ is a submodule of V
and, moreover, it is a complement to W, since TrG(σ) = σ and

φ ◦ σ = TrG(π) ◦ σ = TrG(π ◦ σ) = IdW



Example.
G = Z2. A module over G is in one-two-one correspondence with
a vector space together with a linear operator J subject to the
relation J2 = Id (it is called a product structure on V).
For any v ∈ V (V is over a field, the characteristic of which
must not divide 2),

TrG(v) = 1
2

(v + Jv)

Now V = V+ ⊕V− such that J|V± = ±Id.
The corresponding decomposition of any vector v ∈ V is

v = v+ + v− , where v± = 1
2

(v ± Jv)

Here V+ = VG and V− is its complement.



Let G be a group, R be a ring. The group ring R[G] is the
direct sum

R[G] =
⊕
g∈G
Rg = {

∑
g∈G

agg | ag ∈ R,∀g ∈ G}

such that only a finite number of ag are not equal to zero,
together with an R−bilinear operation R[G]×R[G]→ R[G],
extending the multiplication in G, i.e.∑

g∈G
agg

∑
g′∈G

bg′g′
 =

∑
g∈G

∑
g′∈G

agbg′gg′

for all ag, bg ∈ R or, equivalently,∑
g∈G

agg

∑
g′∈G

bg′g′
 =

∑
g∈G

∑
h∈G

ahbh−1g

 g



Theorem.
R[G] is a ring over R. If R is unital, then so is R[G].

Proof.
The associativity of R[G] follows from the associativity of G
and R. The unit (identity) in R[G] is 1e, whenever 1 ∈ R.

Example.
G = Z2 with elements {e, σ}, such that σ2 = e. Now
R[G] = {ae + bσ | a, b ∈ R} with multiplication

(ae + bσ)
(
a′e + b′σ

)
= (aa′ + bb′)e + (ab′ + ba′)σ

for all a, b, a′, b′ ∈ R. The algebra is commutative (unital) if and
only if so is R.



Assume, R is unital and it contains 1
2 . Introduce another basis

t± = 1
2

(e± σ)

Every element a ∈ R[G] decomposes as a = a+t+ + a−t− for
some a± ∈ R.
Taking into account that

(t±)2 = t±, t+t− = t−t+ = 0

and thus

(a+t+ + a−t−)
(
a′+t+ + a′−t−

)
=
(
a+a′+

)
t+ +

(
a−a′−

)
t−

for all a±, a′± ∈ R, we obtain an isomorphism of associative
commutative algebras

R[G] ' R⊕R



Theorem.
There is a one-to-one correspondence between k−linear
representations of k[G] and G for any field k.

Proof.
We take into account that G is a multiplicative subset of the
group algebra k[G] and k[G] is generated by G over k.

Examples.
(*) If G = Zm, then for each R, R[G] is isomorphic to
R[x1, x−1

1 , . . . , xm, x−1
m ], the ring of Laurent polynomials with

coefficients in R. For R = k, k−linear representations are
uniquely determined by the image of the generators, i.e. by
the set of commuting k−linear invertible maps {Ai}mi=1, such
that xi 7→ Ai, x−1

i 7→ A−1
i for all i = 1, . . . ,m.

(*) Recall that the latter is true for k−linear representations of
k[x1, . . . , xk], except Ai are not required to be invertible.



Tensor products

Let V1, . . . ,Vm be k−linear vector spaces. The tensor product

m⊗
i=1

Vi = V1 ⊗ . . .⊗Vm

is a vector space together with a universal multilinear map∏m
i=1 Vi →

⊗m
i=1 Vi, which satisfies the following property: for

any other vector space W and a multilinear map
∏m

i=1 Vi →W,
there exists a unique linear map

⊗m
i=1 Vi →W, such that the

following diagram is commutative ⊗m
i=1 Vi

��∏m
i=1 Vi

66

//W



If Vi are finite-dimensional, then
•

dim
m⊗

i=1
Vi =

m∏
i=1

dimVi

• In particular, if
(
eij
)dim Vi

j=1
is a basis of Vi for i = 1, . . . ,m,

then
(
e1j1 ⊗ . . .⊗ emjm

)
is a basis for

⊗m
i=1 Vi.

• The space of multilinear maps
∏m

i=1 Vi →W is isomorphic
to W ⊗

(⊗m
i=1 V∗i

)
, where V∗i is the space of linear

functions on Vi (the dual vector space).
• In particular,

Homk(V,W) 'W ⊗V∗, Endk(V) ' V ⊗V∗



• If Ai, i = 1, . . . ,m are k−algebras, then
⊗m

i=1Ai is also a
k−algebra with the multiplication generated by

(a1 ⊗ . . . am)
(
a′1 ⊗ . . . a′m

)
=
(
a1a′1 ⊗ . . . ama′m

)
• If Vi are Ai modules,

⊗m
i=1 Vi is a module over

⊗m
i=1Ai:

(a1 ⊗ . . . am) (v1 ⊗ . . . vm) = (a1v1 ⊗ . . . amvm)

• The tensor product of Gi−modules is a
∏

i Gi−module

(g1, . . . gm) (v1 ⊗ . . . vm) = (g1v1 ⊗ . . . gmvm)

• If Gi = G then
⊗m

i=1 Vi is G−module thanks to the
diagonal embedding ∆m : G ↪→ G× . . .×G.



Proposition.
Let Vi be simple k−linear finite-dimensional Gi−modules, where
k is an algebraically closed field. Then

⊗m
i=1 Vi is a simple∏

i Gi−module.

Proof
It is sufficient to prove this statement for m = 2.

Choose a basis (fj)dim V2
j=1 for V2. Then

V1 ⊗V2 =
dim V2⊕

j=1
V1 ⊗ fj ' (dimV2)V1

is a semisimple decomposition of V1 ⊗V2 as a G1−module.



This means that any vector v ∈ V1 ⊗V2 decomposes as

v =
dim V2∑

j=1
vj ⊗ fj

such that the correspondence φj : v 7→ vj ∈ V1 is a morphism of
G1−modules for all j = 1, . . . ,m.

Let U ⊂ V1 ⊗V2 be a simple G1−submodule. Then it must be
isomorphic to V1 and, by Schur’s Lemma, the restriction of φj
to U are scalar multipliers of a fixed isomorphism. This implies
that there exist constants c1, . . . , cm ∈ k, such that ∀u ∈ U

u =
dim V2∑

j=1
cjv1 ⊗ fj = v1 ⊗

dim V2∑
j=1

cjfj


where v1 ∈ V1 is uniquely associated to u.



Hence U = V1 ⊗ L, where L is a 1-dimensional subspace of V2,
spanned by the vector

v2 =

dim V2∑
j=1

cjfj


Similarly, any G1−submodule U′ of V1×V2 is isomorphic to the
direct sum of r > 0 copies of V1, therefore there exists an
r−dimensional vector subspace W ⊂ V2, such that U′ = V1⊗W.

For any g2 ∈ G2, v1 ∈ V1, w ∈W one has

g2 (v1 ⊗ w) = v1 ⊗ (g2w)

thus U′ is G2−invariant if and only if so is W, but then W = V2
and U′ coincides with the whole tensor product V1 ⊗V2.



Consider k[G] as a module over G×G, where

(h1, h2)

∑
g∈G

agg

 =
∑
g∈G

ag

(
h1gh−1

2

)

Lemma.
I is an ideal (a simple ideal) of k[G] if and only if it is a
G×G−submodule (a simple G×G−submodule).

Proof.
It follows from the fact that k[G] is generated by G.
It is worth mentioning that there is a canonical isomorphism of
algebras

k[G×G] ' k[G]⊗ k[G]

which associates (g1, g2) with g1 ⊗ g2 for all (g1, g2) ∈ G×G.



Given any G−module V, the space of k−linear endomorphisms
of V, Endk(V), is also a G×G−module with the action

(h1, h2)φ = h1 ◦ φ ◦ h−1
2

Let us remark that this action is the same as the action of
G×G on the tensor product V ⊗V∗.
Since V is a k[G]−module, there is a canonical morphism of
algebras from k[G] to Endk(V).

Lemma.
The map k[G]→ Endk(V) is a morphism of G×G−modules.

Proof.
For any v ∈ V, one has

(h1, h2)

∑
g∈G

agg

 v =
∑
g∈G

ag

(
h1gh−1

2

)
v = h1◦

∑
g∈G

agg

◦h−1
2 (v)



Decomposition of the group algebra

Theorem.
Let G be a finite group and {Vα} be the collection of all its
simple modules over k. Let Dα = EndG(Vα). Then

k[G] =
⊕
α

EndDα(Vα)

Proof.
First notice that, by the one-to-one correspondence between
representations of G and k[G], a simple G−module V is also a
simple k[G]−module. Since k[G] is finite-dimensional over k,
k[G]v is a finite-dimensional submodule of V for any v ∈ V.
Thus every irreducible representation of a finite group must be
finite-dimensional.



Since G×G is a finite group, any module over it is semisimple,
thus so is k[G]. In particular, the kernel of k[G]→ Endk(V) is a
direct summand, that is, there exists a G×G−submodule AV of
k[G], such that

k[G] = AV ⊕Ker
(
k[G]→ Endk(V)

)
Notice that AV is an ideal of the group algebra.
By Wedderburn’s theorem, if V is simple, then AV ' EndDα(V).
On the other hand, for two non-isomorphic simple modules V
and V′, there are no non-zero morphisms between AV and
Endk(V′) as, being regarded as G−modules,

AV ⊂ Endk(V) = Vdim V, Endk(V′) = (V′)dim V′

Thus AV belongs to the kernel of k[G]→ Endk(V′).



We obtain the following decomposition of k[G] into the direct
sum of ideals corresponding to all simple G−modules Vα:

k[G] =
⊕
α

EndDα(Vα)⊕
⋂
α

(
k[G]→ Endk(Vα)

)
But the last summand is zero as, if a ∈ k[G] acts as zero on any
simple k[G]−module, then it acts as zero on any k[G]−module
(since any module is semisimple, i.e. it is a direct sum of simple
modules); this is not true for the left action of the element a on
k[G] (eg. because a does not annihilate the identity).
Therefore

k[G] =
⊕
α

EndDα(Vα)

The next lemma provides us with the explicit construction of
the summand A(V) for each simple G−module V.



Lemma.
Define a k−linear map ψ from Endk(V) to k[G]

ψ(A) =
∑
g∈G

Tr(Ag−1) g ∈ k[G] for all A ∈ Endk(V)

Then ψ is a morphism of G×G−modules.

Proof.

Tr
((

h1Ah−1
2

)
g−1

)
= Tr

(
A
(
h−1

2 g−1h1

))
= Tr

(
A
(
h−1

1 gh2

)−1
)

Denote h = h−1
1 gh2, then

ψ(h1Ah−1
2 ) =

∑
h∈G

Tr(Ah−1) h1hh−1
2 = h1ψ(A)h−1

2



Corollary
(a) Let us restrict ψ to EndD(V); it is not zero, as there exist

g ∈ G, A ∈ EndD(V), such that Tr(Ag−1) 6= 0 (eg. when A
is equal to the image of g in EndD(V)), which implies that
at least one coefficient in the decomposition of ψ(A) ∈ k[G]
is not 0 and hence ψ(A) 6= 0.
Therefore ψ is a monomorphism.

(b) k[G] is the direct sum of simple ideals

k[G] =
⊕
α

ψ
(
EndDα(Vα)

)
where the sum is taken over the set of all non-isomorphic
simple G−modules.

(c)

|G| = dimk k[G] =
∑
α

(dimk Dα)
(

dimDα Vα
)2


