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(Linear) representations of groups

Let G be a group.

Presentation of G:
Representation of G on a

vector space V:

An epimorphism FS � G for

a subset S of G, where FS is

the free group generated by S

An action of G on V by

linear transformations;

equivalently, a group

morphism G→ GL(V).

The same words can be said about some other algebraic

structures: associative, associative commutative and Lie

algebras.



Examples of group representations

• GL(V) canonically acts on V by linear transformations;

• so does any subgroup of GL(V), eg. SL(V), O(V), SO(V),
U(V), SU(V), whenever it is de�ned;
• V1 and V2 are modules over G1 and G2, respectively. Then

V1 ×V2 is a module over G1 ×G2, where the latter is the

product of group with the canonical multiplication, neutral

element and inverses:

(g1, g2)(g′1, g′2) = (g1g′1, g2g′2), (g1, g2)−1 = (g−11 , g−12 )

G1 ×G2 3 e = (e, e), gi, g
′
i ∈ Gi, i = 1, 2

The linear action of G1 ×G2 on V1 ×V2 is

(g1, g2)(v1, v2) = (g1v1, g2v2), gi ∈ Gi, vi ∈ Vi, i = 1, 2



Product in a category

Let C be a category and (Xi)i∈I be an indexed family of objects,

parameterized by an index set I (in�nite, in general).

The direct product X =
∏

i∈IXi is an object together with

morphisms πj : X→ Xj (projections) for all j ∈ I, satisfying the

next property: for any family of morphisms (ψi : Y → Xi)i∈I,
there exists a unique morphism ψ : Y → X, such that the

following diagram is commutative:

X

πi

��
Y

ψ

88

ψi // Xi

If the product exists, it is unique up to canonical isomorphism.



Direct product of sets

Given an I−indexed family of sets (Xi)i∈I, where I is possibly
in�nite, the product (the direct product of sets) is the Cartesian

product, de�ned as follows:

X =
∏
i∈I

Xi = {x : I→ ∪i∈IXi | x(i) ∈ Xi, ∀i ∈ I}

with the projections πj : X→ Xi, πj(x) = x(j) for all j ∈ I.

For a family of maps (ψi : Y → Xi)i∈I, there exists a canonical

map ψ : Y → X, de�ned for any y ∈ Y as follows:

ψ(y) : I→ ∪i∈IXi, ψ(y)(i) = ψi(y) ∈ Xi

One has πj(ψ(y)) = ψ(y)(j) = ψj(y) for all j ∈ I, which is what

we need.



Direct product of groups and vector spaces

Given an I−indexed family of groups (Gi)i∈I and vector spaces

(Vi)i∈I, the corresponding direct product of sets

G̃ =
∏
i∈I

Gi = {g : I→ ∪i∈IGi | g(i) ∈ Gi}

Ṽ =
∏
i∈I

Vi = {v : I→ ∪i∈IVi | v(i) ∈ Vi}

is a group and a vector space, respectively. For groups:

• the multiplication is determined by the property

gg′ : i 7→ g(i)g′(i), ∀g, g′ ∈ G̃

• the neutral element is i 7→ e;

• the inverse of g−1 : i 7→ (g(i))−1, ∀i ∈ I.



Direct product of groups and vector spaces

For vector spaces:

• the k−linear combination cv + c′v′, where v, v′ ∈ Ṽ,

c, c′ ∈ k, acts on the index set I as follows:

i 7→ cv(i) + c′v′(i),

• zero in Ṽ is the identical zero: i 7→ 0 for all i ∈ I.

The direct sum of vector spaces
⊕

i∈IVi is a vector subspace of

Ṽ, consisting of v : i 7→ Vi with a �nite number of non-zero

values.



If I is �nite, I = (1, 2, . . . , n), then

• the direct product of groups is the set of n−tuples∏
i∈I

Gi = {(g1, . . . , gn) | gi ∈ Gi, i = 1 . . . n}

with the componentwise multiplication of n−tuples

(g1, . . . , gn)(g′1, . . . , g′n) = (g1g′1, . . . , gng′n)

and componentwise inverses

(g1, . . . , gn)−1 = (g−11 , . . . , g−1n )

The neutral element is the diagonal element (e, . . . , e).
• n−tuples are in one-two-one correspondence with maps

g : I 7→ ∪i∈IGi, g(i) = gi.



• The direct product of vector spaces is the set of n−tuples∏
i∈I

Vi = {(v1, . . . , vn) | vi ∈ Vi, i = 1 . . . n}

with componentwise linear combination of n−tuples for
c, c′ ∈ k

c(v1, . . . , vn) + c′(v′1, . . . , v′n) = (cv1 + c′v′1, . . . , cvn + c′v′n)

The zero element is the diagonal element (0, . . . , 0).
• n−tuples of vectors are in one-two-one correspondence with

maps

v : I 7→ ∪i∈IVi, v(i) = vi.

• ⊕
i∈IVi =

∏
i∈IVi.



Examples of group representations

• (Generalization of the product of two representations)

Let Vi and Gi be indexed families of vector spaces and

groups, respectively, parameterized by the same index set I,

such that Vi is a Gi module for all i ∈ I.

Then Ṽ =
∏

i∈IVi is a module of G̃ =
∏

i∈IGi.

The representation is de�ned pointwise, similar to the

algebraic structures on the direct products.

• In particular, for a �nite set I = (1, 2, . . . , n) the
representation is de�ned in terms of n−tuples

(g1, . . . , gn)(v1, . . . , vn) = (g1v1, . . . , gnvn)

where gi ∈ Gi, vi ∈ Vi, i ∈ I.



Examples of group representations

• Let φ : G1 → G2 be a group morphism, V be a G2−module,

then V is a G1−module:

g1v = φ(g1)v, g1 ∈ G1, v ∈ V

Indeed, we take the composition of two morphisms of

groups G1 → G2 and G2 → GL(V);
• (combination of the previous examples)

Consider the family Gi = G for i ∈ I.

Take the diagonal embedding ∆I : G ↪→
∏

iG, de�ned as

follows: the image of g ∈ G is the constant map i 7→ g.

If I is �nite then ∆I(g) = (g, g, . . .).
It is easy to verify that ∆I is a group morphism, thus

Ṽ =
∏

iVi is a G−module.



Examples of group representations

• Let X be a set and F(X) be the space of k−valued
functions on X for a �eld k.

F(X) is a k−vector space under pointwise addition and

multiplication by a scalar

(c1f1 + c2f2)(x) = c1f1(x) + c2f2(x)

where f1, f2 are functions, c1, c2 are scalars and x is any

element of X.

Notice that F(X) is �nite-dimensional if and only if X is

�nite. Indeed, it admits a canonical basis (δx)x∈X
parameterized by elements of X:

δx(y) =
{

1, y = x

0, y 6= x



Examples of group representations

F(X) is a module over the group Aut(X) of bijections of X:
For any g ∈ Aut(X), viewed as a bijection X→ X, and f : X→ k

gf = (g−1)∗(f) = f ◦ g−1 : X→ k

Indeed, this operation respects the product in Aut(X)

(g1g2)f = f ◦ (g1 ◦ g2)−1 = f ◦ g−12 ◦ g
−1
1 = g1(g2f)

Besides ef = f ◦ Id = f for any f ∈ F(X), g1, g2 ∈ Aut(X).
Therefore Aut(X) acts on F(X). Moreover, this action is linear:

g(c1f1 + c2f2)(x) = (c1f1 + c2f2)(g(x)) = c1f1(g(x)) + c2f2(g(x))

thus g(c1f1 + c2f2) = c1gf1 + c2gf2.



Examples of group representations

• If X is a G−space, then there is a group morphism

G→ Aut(X). By transitivity, F(X) is a G−module;

• In particular, the (left) action of G on itself G×G→ G

gives us a representation of G on F(G), called the left

regular representation.

• The right action of G on itself, (g1, g2) 7→ g1g
−1
2 , gives us

the right regular representation;

• The product G×G acts on G as follows:

(g1g2)g = g1gg
−1
2 , ∀g, g1, g2 ∈ G

Thus F(G) is a G×G−module;

• Consider the diagonal embedding ∆: G ↪→ G×G; by

transitivity, F(X) is again a G−module (the third way!)



Submodules of a G−module

A submodule of a G−module V is a vector subspace W ⊂ V

closed under the action of G:

∀g ∈ G,w ∈W, gw ∈W

The zero subspace {0} of V and V itself are submodules.

A representation is called irreducible and the module is called

simple if there are no submodules but the above two. Otherwise

it is reducible.

Given a submodule W ⊂ V, the quotient vector space V/W,

de�ned as the set of equivalence classes under the relation

v ∼ v + w for all v ∈ V, w ∈W, together with the canonical

structure of a vector space (generalizing the quotient of groups),

is a G−module.



Morphisms of modules

A linear map ϕ : V1 → V2 between two G−modules is called a

morphism of modules if it commutes with the G−action, i.e.
ϕ(gv) = gϕ(v) for all g ∈ G, v ∈ V. A morphism of modules is a

monomorphism (epimorphism, isomorphism) if the underlying

linear map is injective (surjective, bijective), respectively.

• The kernel and the image of ϕ are G−submodules;

• The composition of two morphisms of G−modules,

whenever it is de�ned, is a morphism of modules;

• The identity map V→ V is a morphism of modules;

• The inverse of any morphism as a linear map, if it is

invertible, is again a morphism of G−modules;

• All G−modules together with their morphisms is a category

under the composition.



Examples of submodules and morphisms

• For a submodule W of V, the inclusion W ↪→ V (the

quotient map V � V/W) is a monomorphism (an

epimorphism) of modules, respectively;

• A vector space over a �eld k as a k∗−module under the

multiplication. Any vector subspace is a submodule and

any linear map is a morphism of modules;

• For a G−module V, the subspace of linear functions

V∗ ⊂ F(V) is a G−submodule (called the dual module);

• If X is a topological space (a smooth manifold) and G acts

on X by continuous (smooth) maps, then the subspace of

continuous (smooth) functions on X is a G−submodule.

• Given a family of modules (Gi,Vi)i∈I, the action of

G̃ =
∏

i∈IGi preserves
⊕

i∈IVi ⊂ Ṽ =
∏

i∈IVi, hence it is a

G̃−submodule;



Trivial representation and invariant vectors

Given any group G and a vector space V, there always exists

trivial representation of G on V:

G 3 g 7→ Id ∈ GL(V)

For any G−module, the set of invariant vectors

{v ∈ V | gv = v, ∀g ∈ G}

is a G−submodule, which is a trivial module itself.

• Consider the following action of U(1) on R3:

U(1) 3 exp (iθ) : (x, y, z) 7→ (cos θx− sin θy, sin θx + cos θy, z)

Then z−axis is the submodule of invariant vectors.



Schur's lemma. Part 1

If V1 and V2 are two �nite-dimensional irreducible

representations of a group G and ϕ is a morphism of modules

(also called a G−linear map or a linear map over G) - a linear

transformation from V1 to V2 that commutes with the action of

the group, then either ϕ is invertible, or ϕ = 0.

The proof is simple: the kernel and the image of ϕ are

G−submodules of V1 and V2, respectively. Since both modules

are simple, each of these submodules is either zero or coincides

with the whole module. There are two options:

1. Imϕ = 0, then ϕ = 0;

2. Imϕ = V2, then Kerϕ must be zero, hence ϕ is an

isomorphism of the modules.



Schur's lemma. Part 1. Example

Here we use the notations HomG(V1,V2) and
EndG(V) = HomG(V,V) for linear maps over G

(homomorphisms and endomorphisms of modules, respectively).

Consider the algebra of quaternions H: it has a vector basis

(1, i, j, k), consisting of anti-commuting complex units, i.e.

i2 = j2 = k2 = −1 and ij = −ji, ik = −ki, jk = −kj

with an additional relation

ijk = −1

The multiplication on H is obtained by extending of the above

relations by linearity.



Schur's lemma. Part 1. Example

For any x = x0 + x1i + x2j + x3k, de�ne the real and imaginary

parts of x

Re(x) = x0, Im(x) = x1i + x2j + x3k

the conjugate

x̄ = x0 − x1i− x2j− x3k

which satis�es xy = ȳx̄ for all pairs of quaternions, and the

absolute value

|x|2 = xx̄ = x̄x =
3∑

r=0

x2r

Then for any non-zero x

x−1 = x̄

|x|2



Schur's lemma. Part 1. Example

H is non-commutative, however, Re(xy) = Re(yx) for any two

quaternions x and y.

One has |xy| = |x||y| and |1| = 1, therefore

1. the set of unitary quaternions Sp(1) is a subgroup of

H∗ = H \ {0};
2. Sp(1) acts on H on the left by orthogonal transformations,

hence H ' R4 is an Sp(1)−module;

3. consider H as a complex vector space, where the

multiplication by complex numbers is given by the action of

C = {x0 + x1i} ⊂ H on the right, then Sp(1) becomes a

complex subgroup of GL2(C);
4. 2 and 3 implies that Sp(1) ⊂ U(2) = O(4) ∩GL2(C). One

can show that Sp(1) = SU(2).



Schur's lemma. Part 1. Example
Explanation. The real scalar product on H ' R4

(x, y) = Re(x̄y), ∀x, y ∈ H

extending the norm |x|2 to all pairs of vectors, makes H into a

Euclidean vector space. The right action by imaginary

quaternions is skew-adjoint with respect to this scalar product:

for any z ∈ H, such that Re(z) = 0 and thus z̄ = −z one has

(x, yz) = Re(x̄yz) = Re(zx̄y) = −Re(xzy) = −(xz, y)

In general, a complex vector space together with a real scalar

product is Hermitian if the multiplication on the complex unit is

skew-adjoint. Then the corresponding Hermitian product 〈, 〉,
with the property 〈v1, v2〉 = 〈v2, v1〉, is de�ned as follows:

〈v1, v2〉 = (v1, v2) +
√
−1(Iv1, v2), v1, v2 ∈ V



Schur's lemma. Part 1. Example

On the other hand, for any x ∈ H∗ and y ∈ H,

Re(xyx−1) = Re(x−1xy) = Re(y)

therefore the subspace of imaginary quaternions

{y ∈ H |Re(y) = 0} ' R3

is stable under conjugation y 7→ xyx−1, thus it is an
Sp(1)−submodule of H.

Taking into account that Sp(1)−action preserves the scalar

product, we obtain a group morphism Sp(1)→ O(3). It induces
an epimorphism Sp(1) � SO(3), the kernel of which is {±1}.

We got two representations of Sp(1) ' SU(2) of di�erent
dimensions, both are irreducible, thus there are no Sp(1)−linear
maps between them, except the trivial one (= 0).



Schur's lemma. Part 2

2. If V is an irreducible �nite-dimensional G−module over an

algebraically closed �eld k and ϕ is an morphism of modules

V→ V, then it is a scalar multiple of the identity.

The proof: since k is algebraically closed (eg. k = C), there exists
an eigenvector v 6= 0 of ϕ corresponding to an eigenvalue λ ∈ k,

ϕ(v) = λv. The λ−eigenspace Vλ of ϕ is a G−submodule, since

for any v ∈ Vλ and any g ∈ G, one has ϕ(gv) = gϕ(v) = λgv,
therefore Vλ = V and ϕ acts by multiplication on λ.

Remark: For a more general �eld k the space of G−linear
endomorphisms is an algebra over k with division.



Schur's lemma for k = R

There are only three division algebras over the �eld of real

numbers: R, C and H. The �rst and the second algebras are

commutative (�elds), the third one is not. All three division

algebras can be obtained via Schur's lemma.

• G = GLn(R) with the canonical (or standard)

representation on Rn, EndG(Rn) = R;
• G = GLn(C) with the canonical representation on Cn, then

EndG(Cn) = C;
• G = GLn(H), the group of invertible matrices whose entries

are quaternions, with the standard representation on Hn by

left action on vector columns. Then EndG(Hn) = H, where
H is acting on vectors on the right.


