Introduction to representation theory Lecture 3 Basic representation theory (beginning)

Alexei KOTOV

July 9, 2021, Hradec Kralove

A D F A 目 F A E F A E F A Q Q

(Linear) representations of groups

Let G be a group.

Presentation of G:

Representation of G on a vector space V:

An epimorphism $F_S \rightarrow G$ for a subset S of G, where F_S is the free group generated by S An action of G on V by linear transformations; equivalently, a group morphism $G \rightarrow GL(V)$.

うして ふゆ く 山 マ ふ し マ う く し マ

The same words can be said about some other algebraic structures: associative, associative commutative and Lie algebras.

- GL(V) canonically acts on V by linear transformations;
- so does any subgroup of GL(V), eg. SL(V), O(V), SO(V), U(V), SU(V), whenever it is defined;
- V_1 and V_2 are modules over G_1 and G_2 , respectively. Then $V_1 \times V_2$ is a module over $G_1 \times G_2$, where the latter is the product of group with the canonical multiplication, neutral element and inverses:

$$(g_1, g_2)(g'_1, g'_2) = (g_1g'_1, g_2g'_2), \quad (g_1, g_2)^{-1} = (g_1^{-1}, g_2^{-1})$$

$$G_1 \times G_2 \ni e = (e, e), g_i, g'_i \in G_i, i = 1, 2$$

The linear action of $G_1 \times G_2$ on $V_1 \times V_2$ is

$$(g_1,g_2)(v_1,v_2)=(g_1v_1,g_2v_2), \ g_i\in G_i, v_i\in V_i, \, i=1,2$$

Product in a category

Let C be a category and $(X_i)_{i \in I}$ be an indexed family of objects, parameterized by an index set I (infinite, in general).

The direct product $X = \prod_{i \in I} X_i$ is an object together with morphisms $\pi_j \colon X \to X_j$ (projections) for all $j \in I$, satisfying the next property: for any family of morphisms $(\psi_i \colon Y \to X_i)_{i \in I}$, there exists a unique morphism $\psi \colon Y \to X$, such that the following diagram is commutative:

If the product exists, it is unique up to canonical isomorphism.

Direct product of sets

Given an I-indexed family of sets $(X_i)_{i \in I}$, where I is possibly infinite, the product (the direct product of sets) is the Cartesian product, defined as follows:

$$X = \prod_{i \in I} X_i = \{ x \colon I \to \cup_{i \in I} X_i \, | \, x(i) \in X_i, \, \forall i \in I \}$$

with the projections $\pi_j \colon X \to X_i$, $\pi_j(x) = x(j)$ for all $j \in I$.

For a family of maps $(\psi_i \colon Y \to X_i)_{i \in I}$, there exists a canonical map $\psi \colon Y \to X$, defined for any $y \in Y$ as follows:

$$\psi(\mathbf{y}) \colon \mathbf{I} \to \cup_{\mathbf{i} \in \mathbf{I}} \mathbf{X}_{\mathbf{i}}, \ \ \psi(\mathbf{y})(\mathbf{i}) = \psi_{\mathbf{i}}(\mathbf{y}) \in \mathbf{X}_{\mathbf{i}}$$

One has $\pi_j(\psi(y)) = \psi(y)(j) = \psi_j(y)$ for all $j \in I$, which is what we need.

Direct product of groups and vector spaces

Given an I-indexed family of groups $(G_i)_{i \in I}$ and vector spaces $(V_i)_{i \in I}$, the corresponding direct product of sets

$$\begin{split} \tilde{G} &= \prod_{i \in I} G_i = \{g \colon I \to \cup_{i \in I} G_i \, | \, g(i) \in G_i \} \\ \tilde{V} &= \prod_{i \in I} V_i = \{v \colon I \to \cup_{i \in I} V_i \, | \, v(i) \in V_i \} \end{split}$$

is a group and a vector space, respectively. For groups:

• the multiplication is determined by the property

$$gg'\colon i\mapsto g(i)g'(i), \ \ \forall g,g'\in \tilde{G}$$

うして ふゆ く 山 マ ふ し マ う く し マ

- the neutral element is $i \mapsto e;$
- the inverse of g^{-1} : $i \mapsto (g(i))^{-1}, \forall i \in I$.

Direct product of groups and vector spaces

For vector spaces:

• the k-linear combination cv + c'v', where $v, v' \in \tilde{V}$, $c, c' \in k$, acts on the index set I as follows:

 $i \mapsto cv(i) + c'v'(i),$

• zero in \tilde{V} is the identical zero: $i \mapsto 0$ for all $i \in I$.

The direct sum of vector spaces $\bigoplus_{i \in I} V_i$ is a vector subspace of \tilde{V} , consisting of $v : i \mapsto V_i$ with a finite number of non-zero values.

If I is finite, I = (1, 2, ..., n), then

• the direct product of groups is the set of n-tuples

$$\prod_{i\in I}G_i=\{(g_1,\ldots,g_n)\,|\,g_i\in G_i,i=1\ldots n\}$$

with the componentwise multiplication of n-tuples

$$(g_1,\ldots,g_n)(g_1',\ldots,g_n')=(g_1g_1',\ldots,g_ng_n')$$

and componentwise inverses

$$(g_1, \dots, g_n)^{-1} = (g_1^{-1}, \dots, g_n^{-1})$$

The neutral element is the diagonal element (e,...,e).
n-tuples are in one-two-one correspondence with maps

$$g \colon I \mapsto \cup_{i \in I} G_i, g(i) = g_i.$$

• The direct product of vector spaces is the set of n-tuples

$$\prod_{i\in I} V_i = \{(v_1,\ldots,v_n) \mid v_i \in V_i, i = 1 \ldots n\}$$

with componentwise linear combination of n-tuples for $c,c'\in k$

$$c(v_1,\ldots,v_n)+c'(v_1',\ldots,v_n')=(cv_1+c'v_1',\ldots,cv_n+c'v_n')$$

The zero element is the diagonal element $(0, \ldots, 0)$.

 n-tuples of vectors are in one-two-one correspondence with maps

$$v\colon I\mapsto \cup_{i\in I}V_i, \ v(i)=v_i.$$

• $\bigoplus_{i\in I} V_i = \prod_{i\in I} V_i.$

- (Generalization of the product of two representations)
 - Let V_i and G_i be indexed families of vector spaces and groups, respectively, parameterized by the same index set I, such that V_i is a G_i module for all $i \in I$.

Then $\tilde{V} = \prod_{i \in I} V_i$ is a module of $\tilde{G} = \prod_{i \in I} G_i.$

The representation is defined pointwise, similar to the algebraic structures on the direct products.

• In particular, for a finite set I = (1, 2, ..., n) the representation is defined in terms of n-tuples

$$(g_1,\ldots,g_n)(v_1,\ldots,v_n)=(g_1v_1,\ldots,g_nv_n)$$

where $g_i \in G_i$, $v_i \in V_i$, $i \in I$.

 Let φ: G₁ → G₂ be a group morphism, V be a G₂-module, then V is a G₁-module:

$$g_1 v = \phi(g_1)v, \quad g_1 \in G_1, v \in V$$

Indeed, we take the composition of two morphisms of groups $G_1 \rightarrow G_2$ and $G_2 \rightarrow GL(V)$;

• Let X be a set and $\mathcal{F}(X)$ be the space of k-valued functions on X for a field k.

 $\mathcal{F}(X)$ is a k-vector space under pointwise addition and multiplication by a scalar

$$(c_1f_1 + c_2f_2)(x) = c_1f_1(x) + c_2f_2(x)$$

where f_1, f_2 are functions, c_1, c_2 are scalars and x is any element of X.

Notice that $\mathcal{F}(X)$ is finite-dimensional if and only if X is finite. Indeed, it admits a canonical basis $(\delta_x)_{x \in X}$ parameterized by elements of X:

$$\delta_{\mathbf{x}}(\mathbf{y}) = \begin{cases} 1, & \mathbf{y} = \mathbf{x} \\ 0, & \mathbf{y} \neq \mathbf{x} \end{cases}$$

 $\mathcal{F}(X)$ is a module over the group Aut(X) of bijections of X: For any $g \in Aut(X)$, viewed as a bijection $X \to X$, and $f: X \to k$

$$gf = (g^{-1})^*(f) = f \circ g^{-1} \colon X \to k$$

Indeed, this operation respects the product in Aut(X)

$$(g_1g_2)f = f \circ (g_1 \circ g_2)^{-1} = f \circ g_2^{-1} \circ g_1^{-1} = g_1(g_2f)$$

Besides $ef = f \circ Id = f$ for any $f \in \mathcal{F}(X)$, $g_1, g_2 \in Aut(X)$. Therefore Aut(X) acts on $\mathcal{F}(X)$. Moreover, this action is linear:

$$g(c_1f_1 + c_2f_2)(x) = (c_1f_1 + c_2f_2)(g(x)) = c_1f_1(g(x)) + c_2f_2(g(x))$$

thus $g(c_1f_1 + c_2f_2) = c_1gf_1 + c_2gf_2$.

- If X is a G-space, then there is a group morphism
 G → Aut(X). By transitivity, F(X) is a G-module;
- In particular, the (left) action of G on itself $G \times G \to G$ gives us a representation of G on $\mathcal{F}(G)$, called the left regular representation.
- The right action of G on itself, $(g_1, g_2) \mapsto g_1 g_2^{-1}$, gives us the right regular representation;
- The product $G \times G$ acts on G as follows:

$$(g_1g_2)g = g_1gg_2^{-1}, \quad \forall g, g_1, g_2 \in G$$

Thus $\mathcal{F}(G)$ is a $G \times G$ -module;

• Consider the diagonal embedding $\Delta : G \hookrightarrow G \times G$; by transitivity, $\mathcal{F}(X)$ is again a G-module (the third way!)

Submodules of a G-module

A submodule of a G–module V is a vector subspace $W \subset V$ closed under the action of G:

$$\forall g \in G, w \in W, \quad gw \in W$$

The zero subspace $\{0\}$ of V and V itself are submodules. A representation is called irreducible and the module is called simple if there are no submodules but the above two. Otherwise it is reducible.

Given a submodule $W \subset V$, the quotient vector space V/W, defined as the set of equivalence classes under the relation $v \sim v + w$ for all $v \in V$, $w \in W$, together with the canonical structure of a vector space (generalizing the quotient of groups), is a G-module.

Morphisms of modules

A linear map $\varphi \colon V_1 \to V_2$ between two G-modules is called a morphism of modules if it commutes with the G-action, i.e. $\varphi(gv) = g\varphi(v)$ for all $g \in G$, $v \in V$. A morphism of modules is a monomorphism (epimorphism, isomorphism) if the underlying linear map is injective (surjective, bijective), respectively.

- The kernel and the image of φ are G-submodules;
- The composition of two morphisms of G-modules, whenever it is defined, is a morphism of modules;
- The identity map $V \rightarrow V$ is a morphism of modules;
- The inverse of any morphism as a linear map, if it is invertible, is again a morphism of G-modules;
- All G-modules together with their morphisms is a category under the composition.

Examples of submodules and morphisms

- For a submodule W of V, the inclusion W ↔ V (the quotient map V → V/W) is a monomorphism (an epimorphism) of modules, respectively;
- A vector space over a field k as a k*-module under the multiplication. Any vector subspace is a submodule and any linear map is a morphism of modules;
- For a G-module V, the subspace of linear functions
 V^{*} ⊂ F(V) is a G-submodule (called the dual module);
- If X is a topological space (a smooth manifold) and G acts on X by continuous (smooth) maps, then the subspace of continuous (smooth) functions on X is a G-submodule.
- Given a family of modules $(G_i, V_i)_{i \in I}$, the action of $\tilde{G} = \prod_{i \in I} G_i$ preserves $\bigoplus_{i \in I} V_i \subset \tilde{V} = \prod_{i \in I} V_i$, hence it is a \tilde{G} -submodule;

Trivial representation and invariant vectors

Given any group G and a vector space V, there always exists trivial representation of G on V:

```
G \ni g \mapsto Id \in GL(V)
```

For any G-module, the set of invariant vectors

$$\{v \in V \,|\, gv = v, \,\forall g \in G\}$$

is a G-submodule, which is a trivial module itself.

Consider the following action of U(1) on R³:
U(1) ∋ exp(iθ): (x, y, z) → (cos θx - sin θy, sin θx + cos θy, z)
Then z-axis is the submodule of invariant vectors.

Schur's lemma. Part 1

If V_1 and V_2 are two finite-dimensional irreducible representations of a group G and φ is a morphism of modules (also called a G-linear map or a linear map over G) - a linear transformation from V_1 to V_2 that commutes with the action of the group, then either φ is invertible, or $\varphi = 0$.

The proof is simple: the kernel and the image of φ are G-submodules of V₁ and V₂, respectively. Since both modules are simple, each of these submodules is either zero or coincides with the whole module. There are two options:

1. Im
$$\varphi = 0$$
, then $\varphi = 0$;

2. $\text{Im}\varphi = V_2$, then $\text{Ker}\varphi$ must be zero, hence φ is an isomorphism of the modules.

Here we use the notations $Hom_G(V_1, V_2)$ and $End_G(V) = Hom_G(V, V)$ for linear maps over G (homomorphisms and endomorphisms of modules, respectively).

Consider the algebra of quaternions \mathbb{H} : it has a vector basis (1, i, j, k), consisting of anti-commuting complex units, i.e.

$$i^2 = j^2 = k^2 = -1$$
 and $ij = -ji$, $ik = -ki$, $jk = -kj$

with an additional relation

$$ijk = -1$$

The multiplication on \mathbb{H} is obtained by extending of the above relations by linearity.

For any $x=x_0+x_1\mathrm{i}+x_2\mathrm{j}+x_3\mathrm{k},$ define the real and imaginary parts of x

$$Re(x) = x_0$$
, $Im(x) = x_1i + x_2j + x_3k$

the conjugate

$$\bar{\mathrm{x}} = \mathrm{x}_0 - \mathrm{x}_1 \mathrm{i} - \mathrm{x}_2 \mathrm{j} - \mathrm{x}_3 \mathrm{k}$$

which satisfies $\overline{xy} = \overline{y}\overline{x}$ for all pairs of quaternions, and the absolute value

$$|x|^2=x\bar{x}=\bar{x}x=\sum_{r=0}^3 x_r^2$$

Then for any non-zero x

$$\mathbf{x}^{-1} = \frac{\bar{\mathbf{x}}}{|\mathbf{x}|^2}$$

A D F A 目 F A E F A E F A Q Q

 \mathbb{H} is non-commutative, however, $\operatorname{Re}(xy) = \operatorname{Re}(yx)$ for any two quaternions x and y.

One has |xy| = |x||y| and |1| = 1, therefore

- 1. the set of unitary quaternions Sp(1) is a subgroup of $\mathbb{H}^* = \mathbb{H} \setminus \{0\};$
- 2. Sp(1) acts on \mathbb{H} on the left by orthogonal transformations, hence $\mathbb{H} \simeq \mathbb{R}^4$ is an Sp(1)-module;
- consider H as a complex vector space, where the multiplication by complex numbers is given by the action of C = {x₀ + x₁i} ⊂ H on the right, then Sp(1) becomes a complex subgroup of GL₂(C);
- 4. 2 and 3 implies that $\operatorname{Sp}(1) \subset \operatorname{U}(2) = \operatorname{O}(4) \cap \operatorname{GL}_2(\mathbb{C})$. One can show that $\operatorname{Sp}(1) = \operatorname{SU}(2)$.

Schur's lemma. Part 1. Example Explanation. The real scalar product on $\mathbb{H} \simeq \mathbb{R}^4$

$$(x, y) = \operatorname{Re}(\overline{x}y), \quad \forall x, y \in H$$

extending the norm $|\mathbf{x}|^2$ to all pairs of vectors, makes \mathbb{H} into a Euclidean vector space. The right action by imaginary quaternions is skew-adjoint with respect to this scalar product: for any $z \in \mathbf{H}$, such that $\operatorname{Re}(z) = 0$ and thus $\overline{z} = -z$ one has

$$(x, yz) = \operatorname{Re}(\overline{x}yz) = \operatorname{Re}(z\overline{x}y) = -\operatorname{Re}(\overline{xz}y) = -(xz, y)$$

In general, a complex vector space together with a real scalar product is Hermitian if the multiplication on the complex unit is skew-adjoint. Then the corresponding Hermitian product \langle, \rangle , with the property $\langle v_1, v_2 \rangle = \overline{\langle v_2, v_1 \rangle}$, is defined as follows:

$$\langle v_1, v_2 \rangle = (v_1, v_2) + \sqrt{-1}(Iv_1, v_2), v_1, v_2 \in V$$

On the other hand, for any $x \in \mathbb{H}^*$ and $y \in H$,

$$\operatorname{Re}(xyx^{-1}) = \operatorname{Re}(x^{-1}xy) = \operatorname{Re}(y)$$

therefore the subspace of imaginary quaternions

$$\{\mathbf{y} \in \mathbb{H} \mid \operatorname{Re}(\mathbf{y}) = 0\} \simeq \mathbb{R}^3$$

is stable under conjugation $y \mapsto xyx^{-1}$, thus it is an Sp(1)-submodule of \mathbb{H} .

Taking into account that Sp(1)-action preserves the scalar product, we obtain a group morphism $\text{Sp}(1) \to O(3)$. It induces an epimorphism $\text{Sp}(1) \twoheadrightarrow SO(3)$, the kernel of which is $\{\pm 1\}$.

We got two representations of $\text{Sp}(1) \simeq \text{SU}(2)$ of different dimensions, both are irreducible, thus there are no Sp(1)-linear maps between them, except the trivial one (= 0).

Schur's lemma. Part 2

2. If V is an irreducible finite-dimensional G-module over an algebraically closed field k and φ is an morphism of modules $V \rightarrow V$, then it is a scalar multiple of the identity.

The proof: since k is algebraically closed (eg. $k = \mathbb{C}$), there exists an eigenvector $v \neq 0$ of φ corresponding to an eigenvalue $\lambda \in k$, $\varphi(v) = \lambda v$. The λ -eigenspace V_{λ} of φ is a G-submodule, since for any $v \in V_{\lambda}$ and any $g \in G$, one has $\varphi(gv) = g\varphi(v) = \lambda gv$, therefore $V_{\lambda} = V$ and φ acts by multiplication on λ .

Remark: For a more general field k the space of G-linear endomorphisms is an algebra over k with division.

Schur's lemma for $k = \mathbb{R}$

There are only three division algebras over the field of real numbers: \mathbb{R} , \mathbb{C} and \mathbb{H} . The first and the second algebras are commutative (fields), the third one is not. All three division algebras can be obtained via Schur's lemma.

- G = GL_n(ℝ) with the canonical (or standard) representation on ℝⁿ, End_G(ℝⁿ) = ℝ;
- $G = GL_n(\mathbb{C})$ with the canonical representation on \mathbb{C}^n , then $End_G(\mathbb{C}^n) = \mathbb{C}$;
- G = GL_n(H), the group of invertible matrices whose entries are quaternions, with the standard representation on Hⁿ by left action on vector columns. Then End_G(Hⁿ) = H, where H is acting on vectors on the right.