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A group is a set G together with an operation, which associates

to each pair of elements g1, g2 their product g1g2, satisfying the

following properties :

• the product is associative, i.e. g1(g2g3) = (g1g2)g3;
• there exists a neutral element (identity) e, such that for any

g one has ge = eg = g;

• for each g there exists an inverse g−1, such that

gg−1 = g−1g = e.

A semigroup is an algebraic structure consisting of a set

together with an associative binary operation. If there exists a

neutral element, it is unique (which follows from the

associativity). Then the semigroup is called a monoid.

If an inverse g−1 is de�ned, it is also unique. A group is a

monoid with inverses.



Examples of groups

1. non-zero real, complex or rational numbers with respect to

the usual multiplication;

2. symmetries of a system with respect to the composition;

3. all bijections Aut(X) of a set X with respect to the

composition;

4. the general linear group GL(V) of a vector space V over a

�eld k (= R,C), consisting of all invertible linear maps

V→ V.

A group is called commutative or abelian if the multiplication is

commutative: g1g2 = g2g1 for all g1, g2 ∈ G.

Example 1 is commutative, while examples 3 and 4 are generally

not, unless |X| ≤ 2 and dimV = 1, respectively.



A subgroup is a subset H ⊂ G closed under the group

multiplication and taking of inverses.

A subgroup H of G is called normal if it is stable under the

conjugation, i.e. for all g ∈ G, h ∈ H

ghg−1 ∈ H

Given a subgroup H ⊂ G, we say that g1 and g2 are related if

and only if there exists h ∈ H, such that g1 = g2h. It is an

equivalence relation, i.e. it is re�exive, symmetric and transitive.

The set of equivalence classes G/ ∼ is denoted by G/H.

If H is a normal group, then G/H is a group with respect to the

operations

[g1][g2] = [g1g2] and [g]−1 = [g−1]

which are well-de�ned, i.e. the result does not depend on the

choice of representatives. The neutral element in G/H is [e].



Examples of subgroups

• non-zero rational numbers Q∗ inside non-zero real numbers

R∗ and non-zero real numbers R∗ inside non-zero complex

numbers C∗ (a subgroup of a subgroup is a subgroup!); all

these subgroups are normal as any subgroup of a

commutative group is normal!

• symmetries of a system inside all bijections;

• in particular, GL(V) ⊂ Aut(V);
• the special linear group SL(V) of a �nite-dimensional vector

space V, consisting of all linear transformations with the

determinant equals to 1; it is a normal subgroup

• the group center Z(G) = {g | gg′ = g′g, ∀g′ ∈ G}; it is a
normal abelian subgroup;

• {Id,−Id} ⊂ GL(V); it is a normal subgroup. Moreover, it is

the center of GL(V) if dimV > 1;



Morphism of groups

A morphism of groups is a map φ : G1 → G2 which respects the

group operations, i.e. for all g, g1, g2 ∈ G1

φ(g1g2) = φ(g1)φ(g2) and φ(g−1) = φ(g)−1

The kernel of a morphism φ

Kerφ = {g ∈ G1 |φ(g) = e}

is a normal subgroup of G1, while the image of φ

Imφ = {φ(g)|g ∈ G1}

is a subgroup of G2.



Morphism of groups

A morphism of groups is a monomorphism (epimorphism,

isomorphism) if it is injective (surjective, bijective) as a map.

• G1/Kerφ→ G2 is a monomorphism;

• G1 → Imφ is an epimorphism;

• G1/Kerφ→ Imφ is an isomorphism.

• The composition of two morphisms of groups is again a

morphism of groups;

• The inverse of an isomorphism is an isomorphism.



The category of groups

A category is a collection of "objects"that are linked by

"arrows".

A category C consists of

• a class ob(C) of objects;
• a class hom(C) of morphisms, or arrows, or maps between

the objects;

• the composition of morphisms

hom(a, b)× hom(b, c)→ hom(a, c) for a, b, c ∈ C, which is

associative;

• the identity 1x ∈ hom(x, x) for each object x, such that the

composition of 1x with any morphism, whenever it is

possible, does not change this morphism.

All groups together with morphisms is a category with respect

to the composition of morphisms.



More examples of groups, subgroups, and morphisms

• the set of all orthogonal linear transformations of a real

vector space V with a scalar product (, )

O(V) = {A ∈ GL(V) |, (Av1,Av2) = (v1, v2), v1, v2 ∈ V}

• similar de�nition of the unitary group U(V) ⊂ GL(V) for a
complex vector space V with a Hermitian product;

• the subgroups SO(V) ⊂ SL(V) and SU(V) ⊂ SL(V) for
�nite-dimensional V, by requiring detA = 1;

• the inclusion of any subgroup H ↪→ G is a monomorphism;

• the quotient map G � G/H for any normal subgroup

H ⊂ G is an epimorphism.



More examples of groups, subgroups, and morphisms

• GLn(k) = {A ∈ Matn(k) | detA 6= 0}
• GLn(k) is isomorphic to GL(V) for any n−dimensional

vector space over a �eld k;

• SLn(k) = {A ∈ Matn(k) | detA = 1}
• SLn(k) is isomorphic to SL(V) for any n−dimensional

vector space over a �eld k. In both case the choice of a

basis in V uniquely determines such an isomorphism;

• On(R) = {A ∈ Matn(R) |AAT = Id}
• On(R) is isomorphic to O(V) for any Euclidean

n−dimensional vector space V; an isomorphism is uniquely

determined by the choice of an orthogonal basis in V;

• O(n) ∩ SL(n) = SOn(R) ⊂ SLn(R) ⊂ GL(n,R) are
subgroups.



More examples of groups, subgroups, and morphisms

• Z, Q, R, C, any �eld k, any vector space V over k with

respect to the sum are abelian groups;

• Z ⊂ R is a normal subgroup (all structures are

commutative);

• R/Z = S1 - the group of rotations of the circle, the angle of

rotation is parameterized by points of S1;

• S1 is isomorphic to the unitary group

U(1) = U(C) = {c ∈ C |, |c| = 1};
• The projection map R→ R/Z is given by

R 3 a 7→ exp (2πia) ∈ U(1)
• Z ⊃ pZ = {pz | z ∈ Z} for a �xed p ∈ Z is a normal

subgroup with respect to the sum. The quotient Zp = Z/pZ
is called the cyclic group of order p; |Zp| = p, Z2 is

isomorphic to {1,−1} (w.r.t. the multiplication of

numbers).



Free groups

Let S be a set. The free group FS over S consists of all words

that can be built from elements of S, called the alphabet,

considering two words to be di�erent unless their equality

follows from the group axioms.

For example, s1s2s
−1
3 s−12 s3 is a "good"word, but s1s2s

−1
2 s3 = s1s3

for s1, s2, s3 ∈ S.

FS is universal and unique up to an isomorphism.

Assume that all elements of a group G can be represented as a

product of elements of a subset S ⊂ G and their inverses. Then

S ↪→ G can be uniquely extended to a epimorphism of groups

FS � G.

In the above case we say that G is generated by S. The kernel of

FS � G consists of relations.



Permutation or symmetric groups

Permutations of n elements, denoted as Sn is the group of

bijections (or automorphisms) of the set {1, 2, . . . , n}.

Example of permutations for n = 4.

τ =
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To get the product of two permutations σ ◦ τ , perform �rst τ ,
then σ:
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The result is σ ◦ τ =
(

1 2 3 4

1 4 2 3

)



To get the product of two permutations τ ◦ σ, perform �rst σ,
then τ :
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The result is τ ◦ σ =
(

1 2 3 4

2 4 3 1

)
6= σ ◦ τ =

(
1 2 3 4

1 4 2 3

)



σ =
(

1 2 3 4

2 4 1 3
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σ−1 =
(

1 2 3 4

3 1 4 2

)
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σ ◦ σ−1 = σ−1 ◦ σ = id =
(

1 2 3 4

1 2 3 4

)

The number of elements in Sn is n! = 1 · 2 · 3 · . . . · n;



Equilateral triangle symmetry

Counterclockwise rotational symmetries

Re�ection symmetries



Counterclockwise rotational symmetries of the
Equilateral Triangle

id R R2

id id R R2

R R R2 id

R2 R2 id R



Mirror symmetries along an axis symmetry of the
Equilateral Triangle

S1 S2 S3
S1 id R R2

S2 R2 id R

S3 R R2 id



Cayley (or multiplication) table of symmetries for the
Equilateral Triangle

id R R2 S1 S2 S3
id id R R2 S1 S2 S3
R R R2 id S3 S1 S2
R2 R2 id R S2 S3 S1
S1 S1 S2 S3 id R R2

S2 S2 S3 S1 R2 id R

S3 S3 S1 S2 R R2 id



The group of symmetries for the Equilateral Triangle is

isomorphic to S3:

Id 7→ Id =
(

1 2 3

1 2 3

)

R 7→ (3, 1, 2) =
(

1 2 3

3 1 2

)

R2 7→ (2, 3, 1) =
(

1 2 3

2 3 1

)

S1 7→ (1, 3, 2) =
(

1 2 3

1 3 2

)

S2 7→ (3, 2, 1) =
(

1 2 3

3 2 1

)

S3 7→ (2, 1, 3) =
(

1 2 3

2 1 3

)

In general, a dihedral group is the group of symmetries of a

regular polygon, Dn for the n−gon.

Dn ( Sn (a strict subgroup) for n > 3.



Braid groups

The braid group on n strands (denoted Bn, also known as the

Artin braid group), is the group whose elements are equivalence

classes of n-braids and whose group operation is composition of

braids. Example of braids for n = 3.



Multiplication in the braid group B3 (3-braids)



The inverse element



The inverse element



Generators of the Braid group Bn

Example of generators for B4.

e = σ1 =

σ2 = σ3 =



σ1 =

σ1 =

σ1 ◦ σ1 =



σ1 =

σ−11 =

σ−11 ◦σ1 = =



The morphism of groups Bn → Sn

Example for B3:

(
1 2 3

3 2 1

) (
1 2 3

3 2 1

)



Bn → Sn is an epimorphism, but not a monomorphism.

(
1 2

2 1

) (
1 2

2 1

) (
1 2

2 1

)



The kernel of Bn → Sn, called the pure braid group and denoted

by PBn or Pn, consists of more than one element.

(
1 2

1 2

) (
1 2

1 2

) (
1 2

1 2

)



Bn is generated by σ1, . . . , σn−1 subject to the relations:

• σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2

• σiσj = σjσi for i− j ≥ 2

The symmetric group Sn is generated by the adjacent

transpositions σi = (i, i + 1) for 1 ≤ i ≤ n− 1

σi =
(

1 . . . i i + 1 . . . n

1 . . . i + 1 i . . . n

)

subject to the following relations:

• σ2i = 1

• σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2

• σiσj = σjσi for i− j ≥ 2



Relation to algebraic topology

The braid group is isomorphic to the fundamental group π1 of
the con�guration space of n points on a disc, while Fn, the free

group generated by n elements, to the fundamental group of the

n−punctured disc.



Action of a group on a set

We say that a group G is acting on a set X, called a G−space, if
there is G×X→ X, (g, x) 7→ gx satisfying

• (associativity) g1(g2x) = (g1g2)x for all g1, g2 ∈ G, x ∈ X;

• (neutral element) ex = x for all x ∈ X

As a corollary of the above properties, g : x 7→ gx is a bijection.

Equivalently, there is a morphism of group G→ Aut(X).

• An action is called free if for any x ∈ X, gx = x implies

g = e;

• An action is called transitive if for any x, y ∈ X there exists

g ∈ G, such that gx = y. Then X is called a homogeneous

space;

• If an action is free and transitive, X is called a principal

G−space or a G−torsor.



Examples of a group action

1. Action of Aut(X) on X;

2. Any subgroup of Aut(X) is acting on X;

3. Left multiplication in G, G×G→ G, where the right copy

of G is regarded as X. This action is free and transitive, G

is a G−torsor
4. Instead of G take any subgroup H: H×G→ G, where

X = G. This action is free;

5. GL(V)×V→ V, the action by linear transformations.

An action of G on a vector space V by linear transformations is

called a representation of G on V, which is called a G−module.

Representations of G on V are in one-to-one correspondence

with group morphisms G→ GL(V).


