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A group is a set G together with an operation, which associates
to each pair of elements g1, go their product gg2, satisfying the
following properties :

® the product is associative, i.e. g1(gog3) = (g182)g3;

® there exists a neutral element (identity) e, such that for any
g one has ge = eg = g;
e for each g there exists an inverse g~!, such that
gg =g 'g=e
A semigroup is an algebraic structure consisting of a set
together with an associative binary operation. If there exists a
neutral element, it is unique (which follows from the
associativity). Then the semigroup is called a monoid.

If an inverse g~ ! is defined, it is also unique. A group is a

monoid with inverses.



Examples of groups

1. non-zero real, complex or rational numbers with respect to
the usual multiplication;

2. symmetries of a system with respect to the composition;

3. all bijections Aut(X) of a set X with respect to the
composition;

4. the general linear group GL(V) of a vector space V over a

field k (= R, C), consisting of all invertible linear maps
V-V

A group is called commutative or abelian if the multiplication is
commutative: g1go = gogy for all g1,g0 € G.

Example 1 is commutative, while examples 3 and 4 are generally
not, unless |X| < 2 and dimV = 1, respectively.



A subgroup is a subset H C G closed under the group
multiplication and taking of inverses.

A subgroup H of G is called normal if it is stable under the
conjugation, i.e. for all g € G, h € H
ghg™t e H

Given a subgroup H C G, we say that g; and go are related if
and only if there exists h € I, such that g; = goh. It is an
equivalence relation, i.e. it is reflexive, symmetric and transitive.
The set of equivalence classes G/ ~ is denoted by G/H.

If H is a normal group, then G/H is a group with respect to the
operations

[g1][g2] = [g182] and [g] ' =[g7]

which are well-defined, i.e. the result does not depend on the
choice of representatives. The neutral element in G/H is [e].



Examples of subgroups

non-zero rational numbers Q* inside non-zero real numbers
R* and non-zero real numbers R* inside non-zero complex
numbers C* (a subgroup of a subgroup is a subgroup!); all
these subgroups are normal as any subgroup of a
commutative group is normal!

symmetries of a system inside all bijections;

in particular, GL(V) C Aut(V);

the special linear group SL(V) of a finite-dimensional vector
space V, consisting of all linear transformations with the
determinant equals to 1; it is a normal subgroup

the group center Z(G) = {g|gg’ = g'g, Vg’ € G}; it is a
normal abelian subgroup;

{Id, —=Id} c GL(V); it is a normal subgroup. Moreover, it is
the center of GL(V) if dimV > 1,



Morphism of groups

A morphism of groups is a map ¢: G; — Gg which respects the
group operations, i.e. for all g, g1,g2 € Gy

P(8182) = H(81)9(g2) and ¢(g™') = ¢(g) ™"

The kernel of a morphism ¢

Kergp ={g € G1|o(g) = e}

is a normal subgroup of Gi, while the image of ¢

Im¢ = {¢(g)lg € G1}

is a subgroup of Gs.



Morphism of groups

A morphism of groups is a monomorphism (epimorphism,
isomorphism) if it is injective (surjective, bijective) as a map.

® Gy/Ker¢p — Gy is a monomorphism,;

® G; — Im¢ is an epimorphism;

G1/Ker¢p — Im¢ is an isomorphism.

The composition of two morphisms of groups is again a
morphism of groups;

The inverse of an isomorphism is an isomorphism.



The category of groups

A category is a collection of "objects"that are linked by
"arrows".

A category C consists of

a class ob(C) of objects;

a class hom(C) of morphisms, or arrows, or maps between
the objects;

® the composition of morphisms
hom(a, b) x hom(b,c) — hom(a,c) for a,b,c € C, which is
associative;

e the identity 1x € hom(x,x) for each object x, such that the
composition of 1y with any morphism, whenever it is
possible, does not change this morphism.

All groups together with morphisms is a category with respect
to the composition of morphisms.



More examples of groups, subgroups, and morphisms

the set of all orthogonal linear transformations of a real
vector space V with a scalar product (,)

O(V) = {A € GL(V) |7 (AV1,AV2) = (V1,V2),V1,V2 S V}

similar definition of the unitary group U(V) C GL(V) for a
complex vector space V with a Hermitian product;

the subgroups SO(V) C SL(V) and SU(V) C SL(V) for
finite-dimensional V, by requiring det A = 1;
the inclusion of any subgroup H < G is a monomorphism;

the quotient map G — G/H for any normal subgroup
H C G is an epimorphism.



More examples of groups, subgroups, and morphisms

® GL,(k) = {A € Maty(k) | det A # 0}

e GL,(k) is isomorphic to GL(V) for any n—dimensional
vector space over a field k;

e SL,(k) = {A € Mat, (k) | detA =1}

e SLy(k) is isomorphic to SL(V) for any n—dimensional
vector space over a field k. In both case the choice of a
basis in V uniquely determines such an isomorphism;

* O,(R) = {A € Mat,(R) | AAT =1d}

® On(R) is isomorphic to O(V) for any Euclidean
n—dimensional vector space V; an isomorphism is uniquely
determined by the choice of an orthogonal basis in V;

¢ O(n) N SL(n) = SOL(R) C SL,(R) € GL(n,R) are
subgroups.



More examples of groups, subgroups, and morphisms

Z, Q, R, C, any field k, any vector space V over k with
respect to the sum are abelian groups;

Z C R is a normal subgroup (all structures are
commutative);

R/Z = S' - the group of rotations of the circle, the angle of
rotation is parameterized by points of S';

S! is isomorphic to the unitary group

U(1) =U(C) ={c e C|, [e[ = 1};

The projection map R — R/Z is given by

R > a > exp(27ia) € U(1)

7 D> pZ = {pz|z € Z} for a fixed p € Z is a normal
subgroup with respect to the sum. The quotient Z, = Z/pZ
is called the cyclic group of order p; |Z,| = p, Zs2 is
isomorphic to {1, —1} (w.r.t. the multiplication of
numbers).



Free groups

Let S be a set. The free group Fg over S consists of all words
that can be built from elements of S, called the alphabet,
considering two words to be different unless their equality
follows from the group axioms.

For example, 818285185183 is a "good"word, but 818285183 = 8183
for s1,89,83 € S.

Fg is universal and unique up to an isomorphism.

Assume that all elements of a group G can be represented as a
product of elements of a subset S C G and their inverses. Then
S — G can be uniquely extended to a epimorphism of groups
Fg — G.

In the above case we say that G is generated by S. The kernel of
Fg — G consists of relations.



Permutation or symmetric groups

Permutations of n elements, denoted as S, is the group of
bijections (or automorphisms) of the set {1,2,...,n}.

Example of permutations for n = 4.

(12 3 4 (123 4
T™l321 4 7=\l 2 41 3

1 2 3 4 1 2 3



To get the product of two permutations o o 7, perform first 7,
then o

1%<4
1 2 3 4
2>§<4
2 3 4

) 1 2 3 4
The result is 0'07'—(1 4 92 3>

—_—<~ =



To get the product of two permutations 7 o o, perform first o,
then 7:

1 2 3 4
1 2 3 4

The result is 700 = ( ; i



(12 3 4 4 (1234
7=\l 2 4 1 3 7 =13 14 2
1>22%3<4 1>22<<4
1 9 3 4 1 9 3 4
1 2 3 4
1 _ -1 I
coo =0 OU—ld—(1234>

The number of elements in Sy, isn!=1-2-3-...n;



Equilateral triangle symmetry

Counterclockwise rotational symmetries

1 3 2
Rotation by 0 degrees. Rotation by 120 degrees. Rotation by 240 degrees.

Reflection symmetries

VANANYAN




Counterclockwise rotational symmetries of the
Equilateral Triangle

1 3 2
2 3 1 2 3 1
Rotation by 0 degrees. Rotation by 120 degrees. Rotation by 240 degrees.
id | R | R?
id |[id| R |R?
R |R|R*| id
R?|R*|id | R




Mirror symmetries along an axis symmetry of the
Equilateral Triangle

1 3 2
S1 | So | S3

S; | id | R | R?




Cayley (or multiplication) table of symmetries for the
Equilateral Triangle

id| R|R?|S;|Ss|S;3
id |id | R [R*|S; Sy | S
R |R|R*id [S3|S;| Sy




The group of symmetries for the Equilateral Triangle is
isomorphic to Ss:

(123 (123
Id»—>Id—<1 5 3> slh>(1,3,2)_<1 3 2)
1 2
R*—>(3,1,2):(3 X g) SQH(3,2,1):<; 3 i’)
1 2 3 1 2 3
R2b—>(2,3,1)—<2 5 1) S;/>,H>(2,1,3)_<2 ) 3>

In general, a dihedral group is the group of symmetries of a
regular polygon, D, for the n—gon.

Dy € Sy (a strict subgroup) for n > 3.



Braid groups

The braid group on n strands (denoted By, also known as the
Artin braid group), is the group whose elements are equivalence
classes of n-braids and whose group operation is composition of
braids. Example of braids for n = 3.

J J



Multiplication in the braid group Bjs (3-braids)

% J
K

OO




he inverse element

G




T

The inverse element

» E DA



Generators of the Braid group By

Example of generators for By.

][] b

Q

|
—
NG









The morphism of groups B, — S,

Example for Bs:




B, — S, is an epimorphism, but not a monomorphism.

J N %
ST



The kernel of B, — S,, called the pure braid group and denoted
by PB, or Py, consists of more than one element.

OC
DOOSS

7N
— =
DN DO
~_—



B, is generated by o1, ...,0,-1 subject to the relations:
® 0i0i+10; = 0i+10i0i+1 for 1 <i<n —2

® o0ij0; = ojo; fori—j>2

The symmetric group S, is generated by the adjacent
transpositions o3 = (i,i+ 1) for 1 <i<n-—1

(1 i i+1 ... n
S N U T L T
subject to the following relations:
° Ui2 =1
® 0i0i+10i = Oip10i0i+1 for 1 <i<n—2

® 0i0; = 0j0; fori—j>2



Relation to algebraic topology

The braid group is isomorphic to the fundamental group m; of
the configuration space of n points on a disc, while Fy, the free
group generated by n elements, to the fundamental group of the
n—punctured disc.




Action of a group on a set
We say that a group G is acting on a set X, called a G—space, if
there is G x X — X, (g, x) — gx satisfying
e (associativity) gi(gex) = (gi1ge)x for all g1, g2 € G, x € X;

® (neutral element) ex = x for all x € X

As a corollary of the above properties, g: x — gx is a bijection.

Equivalently, there is a morphism of group G — Aut(X).

® An action is called free if for any x € X, gx = x implies
g =€

® An action is called transitive if for any x,y € X there exists
g € G, such that gx = y. Then X is called a homogeneous
space;

e [f an action is free and transitive, X is called a principal
G—space or a G—torsor.



Examples of a group action

1. Action of Aut(X) on X;
2. Any subgroup of Aut(X) is acting on X;
3. Left multiplication in G, G x G — G, where the right copy

of G is regarded as X. This action is free and transitive, G
is a G—torsor

4. Instead of G take any subgroup H: H x G — G, where
X = @G. This action is free;

5. GL(V) x V — V| the action by linear transformations.
An action of G on a vector space V by linear transformations is
called a representation of G on V, which is called a G—module.

Representations of G on V are in one-to-one correspondence
with group morphisms G — GL(V).



