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Symmetry: de�nition and examples

Symmetry - correspondence, immutability (invariance),
manifested in any changes, transformations (for example:
position, energy, information, other).

Examples.

• Translation in time and space

• Rotations about the axis

• Mirror re�ections about an axis (plane, ...)

• Motions, inversions, more general isometries, projective and
conformal transformations, ...

• Gauge symmetries

• Supersymmetries

• ...



Translation symmetry

Translational symmetry is a type of symmetry in which the
properties of the system under consideration do not change
when shifted by a certain vector, which is called the translation
vector.



Translation symmetry in one direction

• Weymouth pine (white eastern or northern white pine, lat.
Pinus strobus) each year forms a new ring of branches, with
some variations depending on the year



Translation symmetry in one direction

• Scale of the Bu� striped keelback

• Rails



Translation symmetries in two directions



Rotation symmetry

Rotational symmetry or radial symmetry is a property of a
geometric object when, being rotated by a certain angle about a
certain axis of rotation, it will be aligned with its original
position.





• Great Pyramid of Giza (also known as the Pyramid of
Khufu or the Pyramid of Cheops). The length of the sides
of the base of the pyramid: south - 230.454 m; north -
230.253 m; west - 230.357 m; east - 230.394 m



• Surface of revolution

• can combine rotation and translation symmetries



The smallest (but not equal to zero) angle α = 360
◦

n
of rotation

around the axis of rotation, if is exists, is called the (elementary)
angle of rotation, and n is the order of the rotational axis.



Rotational (or chiral) tetrahedral symmetry

There are:

• three orthogonal 2-fold rotation axes, each goes through
one of the vertices and the center of the opposite face

• four 3-fold axes, centered between the three orthogonal
directions (equivalently, which go through the midpoints of
the opposite edges).





• The cylinder can be rotated at an arbitrary angle around
the central axis

• although some cylinders have broken symmetries



Rotational symmetry of a sphere



Mirror symmetry or re�ection

This is an example of bilateral symmetry





Floral symmetry

Ä.Á. Ãåëàøâèëè, Å.Â. ×óïðóíîâ, Ì.Î. Ìàðû÷åâ, Í.Â.
Ñîìîâ, À.È. Øèðîêîâ, À.À. Íèæåãîðîäöåâ. Ïðèëîæåíèå
òåîðèè ãðóïï ê îïèñàíèþ ïñåâäîñèììåòðèè
áèîëîãè÷åñêèõ îáúåêòîâ. Æóðíàë îáùåé áèîëîãèè. Òîì
71, � 6. Íîÿáðü-äåêàáðü, 2010, ñòð. 497-513.

Åëåíà Áàäüåâà. Ïîñ÷èòàííûå îòðàæåíèÿ. Ýëåìåíòû
áîëüøîé íàóêè (https://elementy.ru/genbio/synopsis/326/
Prilozhenie_teorii_grupp_k_opisaniyu_psevdosimmetrii_
biologicheskikh_obektov)

https://elementy.ru/genbio/synopsis/326/Prilozhenie_teorii_grupp_k_opisaniyu_psevdosimmetrii_biologicheskikh_obektov
https://elementy.ru/genbio/synopsis/326/Prilozhenie_teorii_grupp_k_opisaniyu_psevdosimmetrii_biologicheskikh_obektov
https://elementy.ru/genbio/synopsis/326/Prilozhenie_teorii_grupp_k_opisaniyu_psevdosimmetrii_biologicheskikh_obektov


Scheme of a 5-petal actinomorphic �ower: m1 ... m5 - planes of
symmetry; 1 ... 10 - auxiliary points, coinciding thanks to the
rotational symmetry. Figure from the article above.



Mirror tetrahedral symmetries

The tetrahedron has six planes of symmetry. Each plane
contains the center of the tetrahedron and one edge (and so
bisects the opposite edge). Equivalently, each plane of symmetry
contains one edge and is orthogonal to the opposite edge.





Mirror symmetries of sphere



• Isometries are transformations that preserve lengths
(distances between points)
• In "usual"Euclidean 3D space, a combination of

translations and rotations (plus mirror symmetries if we
don't care about orientation)

• For the sphere - rotations (plus mirror symmetries)
• For the cylinder - a combination of shifts along the axis of

symmetry and rotations around the axis of symmetry (plus
mirror symmetries)

• When the symmetries of a space are known, the most
symmetric objects of this space (may) solve optimization
problems
• In three-dimensional space, the shortest distance is a

straight line segment,
• while a circle gives the best ratio between perimeter and

area.



Symmetries and psychology

Max Wertheimer (1880 - 1943) is one of the founders of Gestalt
psychology. He was showing (to the subjects ) primitive
symmetrical �gures in which separate sections were cut out.
When the experimenter tried to patch a hole in the circle with a
piece cut out of a square, the children began to worry and
protest. They wanted the shape of the �gure to look perfect.

Thus, our perception is directed towards correctness and
symmetry and therefore tends to impose these properties on the
observed objects.



This appears to be a general principle, stemming in part from
the limited ability of our brains to process information. The
bandwidth of our short-term memory - something around 16
bit/s; if information arrives at a slower rate, then we feel bored,
and if at a higher rate, then we are overloaded. In complex
structured stimuli (patterns), we try to �nd an ordering that
would allow us to distinguish larger elements ("supersigns") in
them and thus deal with less information.

Eibl-Eibesfeldt, Irenaus. The Biological Foundation of
Aesthetics. Chapter 2 in "Beauty and the Brain. Biological
Aspects of Aesthetics".� Birkh�auser Basel, 1988.



What makes a face attractive?

First, symmetry: we prefer it to asymmetry. What makes a face
attractive?

This applies to both male and female faces, according to David
Perrett, head of the Perception Research Lab at the University
of St Andrews, Scotland. Experiments have shown that in all
cultures, men and women like symmetrical faces more than
asymmetric ones.

Moreover, the preference for symmetry plays an important role
in the choice of mate, not only in humans and apes, but also in
birds, even insects.



Perrette believes that ill health and adverse environmental
in�uences can lead to asymmetry, and the degree of facial
symmetry can serve as an indicator of the genome's ability to
resist disease and maintain normal development in adverse
conditions. In addition, the stability of developmental
mechanisms is largely inherited. Therefore, symmetry, at least
face, is beautiful not only for formal reasons, but also due to the
fact that she speaks about the health of a potential partner and
the health of his possible o�spring.

Eric Kandel. The Age of Insight: The Quest to Understand
the Unconscious in Art, Mind, and Brain, from Vienna 1900
to the Present. Random House; 1st edition (March 27, 2012)



Side e�ects

• Apophenia is the tendency to perceive meaningful
connections between meaningless or unrelated things. The
term (German: Apophanie) was coined by psychiatrist
Klaus Conrad in his 1958 publication on the beginning
stages of schizophrenia.

• conspiracy theories



Amorphous and crystalline solids

In solids, atoms can be placed in space in two ways:

1. The disordered arrangement of atoms when they do not
occupy a certain place relative to each other. Such bodies
are called amorphous.

2. An ordered arrangement of atoms, when atoms occupy
quite de�nite places in space. Such substances are called
crystalline.

Amorphous substances have formal features of solids, i.e. they
are able to maintain a constant volume and shape. However,
they do not have a speci�c melting point or crystallization point.



Primitive cell. Bravais lattice

A primitive cell is the minimal imaginary volume of a crystal,
parallel transfers (translations) of which in three dimensions
make it possible to build a crystal lattice as a whole.
A conventional cell is the smallest unit cell whose axes follow
the symmetry axes of the crystal structure.
3 rules of choice (Bravais)

1. The symmetry of the conventional cell must correspond to
the symmetry of the crystal;

2. A conventional cell must have the maximum number of
equal edges and equal corners

3. Provided that the �rst two rules are met, the conventional
cell should have a minimum volume.



Cubic crystal system

1. The primitive cubic system (cP) consists of one lattice
point on each corner of the cube. Each atom at a lattice
point is then shared equally between eight adjacent cubes,
and the unit cell therefore contains in total one atom.
Example: Polonium

2. The body-centered cubic system (cI) has one lattice point
in the center of the unit cell in addition to the eight corner
points. It has a net total of 2 lattice points per unit cell.
Examples: in certain temperature ranges iron, chromium,
vanadium, tungsten, molybdenum, and other metals.



Cubic crystal system

1. The face-centered cubic system (cF) has lattice points on
the faces of the cube, that each gives exactly one half
contribution, in addition to the corner lattice points, giving
a total of 4 lattice points per unit cell. Each sphere in a cF
lattice has coordination number 12. Coordination number is
the number of nearest neighbors of a central atom in the
structure. Examples: iron, aluminum, copper, nickel, lead
and other metals.



Crystal structure of Sodium chloride
commonly known as salt. NaCl is a crystal structure with a face
centered cubic Bravais lattice and two atoms in the basis. There
are 4 Na+ atoms (purple) and 4 Cl- atoms (green) in the
conventional unit cell. One Na atom comes from the 8 corners
and 3 from the six faces. One Cl atom is in the center and 3
come from the twelve edges.



Penrose tiling
In 1974, Roger Penrose (born August 8, 1931) invented a way to
pave an endless plane in a never-repeating pattern using two
simple tiles.



Penrose tiling

There are three types of Penrose tiling. All three types, like any
aperiodic tiling, have the following properties: the Penrose
tiling, being non-periodic, have no translational symmetry � the
pattern cannot be shifted to match itself over the entire plane.
However, any bounded region, no matter how large, will be
repeated an in�nite number of times within the tiling. Despite
their lack of translational symmetry, Penrose tiling may have
both re�ection symmetry and �vefold rotational symmetry.

On April 8, 1982, Israeli physicist and chemist Dan Shechtman
(Nobel Prize in Chemistry, 2011) in experiments on electron
di�raction on a rapidly cooled alloy obtained the �rst
quasicrystalline alloy (today known as "shechtmanite") - a
structure with 5th order symmetry.



Platonic solid

In three-dimensional space, a Platonic solid is a regular, convex
polyhedron. It is constructed by congruent (identical in shape
and size), regular (all angles equal and all sides equal), polygonal
faces with the same number of faces meeting at each vertex.

Five solids meet these criteria:



The �ve Platonic solids



A Platonic solid is uniquely characterized by its Schl�a�i symbol
{p, q}: its faces are p-gons, and each vertex is surrounded by q
faces (the vertex �gure is a q-gon).



Equilateral triangle symmetry

Counterclockwise rotational symmetries

Re�ection symmetries



Counterclockwise rotational symmetries of the
Equilateral Triangle

id R R2

id id R R2

R R R2 id

R2 R2 id R



Mirror symmetries along an axis symmetry of the
Equilateral Triangle

S1 S2 S3
S1 id R R2

S2 R2 id R

S3 R R2 id



Cayley (or multiplication) table of symmetries for the
Equilateral Triangle

id R R2 S1 S2 S3
id id R R2 S1 S2 S3
R R R2 id S3 S1 S2
R2 R2 id R S2 S3 S1
S1 S1 S2 S3 id R R2

S2 S2 S3 S1 R2 id R

S3 S3 S1 S2 R R2 id



The concept of a group

A group (in algebra) - is a set G together with an operation,
which associates to each pair of elements g1, g2 their product
g1 ◦ g2, satisfying the following properties :
• the product is associative, i.e. g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3;
• there exists the neutral element (identity) e, such that for
any g one has g ◦ e = e ◦ g = g;

• for each g there exists the inverse g−1, such that
g ◦ g−1 = g−1 ◦ g = e.

Examples of groups:

• non-zero real or rational with respect to the usual
multiplication;

• symmetries of an object with respect to the composition.



Examples of symmetry groups

• Permutations of n elements, denoted as Sn.
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To get the product of two permutations σ ◦ τ , perform �rst τ ,
then σ:
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The result is σ ◦ τ =
(
1 2 3 4
1 4 2 3

)



To get the product of two permutations τ ◦ σ, perform �rst σ,
then τ :
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The result is τ ◦ σ =
(
1 2 3 4
2 4 3 1

)
6= σ ◦ τ =

(
1 2 3 4
1 4 2 3

)



σ =
(
1 2 3 4
2 4 1 3

)

1

��

2

''

3

ww

4

��
1 2 3 4

σ−1 =
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1 2 3 4
3 1 4 2
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σ ◦ σ−1 = σ−1 ◦ σ = id =
(
1 2 3 4
1 2 3 4

)

The number of elements in Sn is n! = 1 · 2 · 3 · . . . · n;



Braid group (also known as the Artin braid group)

(
1 2 3
3 2 1

) (
1 2 3
3 2 1

)



Multiplication in the braid group B3 (3-braids)



The inverse element



Examples of symmetry groups

• Symmetries of the Equilateral Triangle (the same as S3);
• symmetry of the tetrahedron (the same as S4);
• symmetries of other regular polygons and polyhedra;

• groups, consisting of point symmetries (leave at least one
point �xed);

• 32 crystallographic point groups (allow axes of rotation
only of order 1, 2, 3, 4 and 6);

• 230 crystallographic groups.



Why does the honeycomb have the correct hexagonal
structure?



Groups in algebra

• Galois theory. Appeared from attempts to �nd a formula in
radicals for the roots of an equation of arbitrary degree.

The Babylonians were able to solve quadratic equations in the
second millennium BC.

Cubic equations - Scipion del Ferro (1465-1526), Niccolo
Tartaglia (1500-1557) and Gerolamo Cardano (1501-1576).

Equation of the fourth degree - Lodovico (Luigi) Ferrari
(1522-1565) and Gerolamo Cardano.

4 - this is the highest degree of the equation for which a general
formula for the solution can be established (the Abel-Ru�ni
theorem, 1824).



The proof by Paolo Ru�ni (1765-1822), published in 1799, was
inaccurate and took about 500 pages. The complete proof
belongs to Niels Henrik Abel (1802-1829).

The proofs are based on Lagrange's ideas related to
permutations of the roots of the equation.

Evariste Galois (1811-1832) proved that for equations of degree
5 and higher the solution "in radicals"is impossible. He
introduced abstract criteria for �nding roots in terms of groups
(now the theory of groups and Galois extensions). Thanks to his
ideas, mathematics turned from a science of computation to a
science of structures.

Ian Stewart. Why Beauty Is Truth: A History of Symmetry
(2007)



Lie groups

A group, such that the set G inherits a smooth structure, i.e. is
a manifold, and all operations are smooth. Example: rotation of
sphere, rigid motions in the Euclidean space, etc.

Sophus Lie, 1842 � 1899





• "Erlangen program"by Felix Klein (1849-1925) - branches
of geometry are classi�ed by di�erent groups of space
transformations More precisely, every geometry
(Riemannian, conformal, projective, ...) has a "�at
model"(homogeneous space), which admits the maximum
symmetry group. The obstruction to being "�at"is the
curvature, which also reduces the symmetry group;

• symmetries of di�erential equations (as soon as we know
one solution, we can produce many by use of the symmetry
group; we may also impose the invariance property with
respect to all or some symmetries - the equation for
invariant solutions may turn out to be simpler than the
original one);

• many special functions have group theory meaning (eg.
Fourier series or Schur polynomials);



Symmetries and conservation laws

Noether's theorem (1918) states that each continuous symmetry
of a physical system corresponds to a certain conservation law

Amalie Emmy Noether (March 23, 1882, Erlangen, Germany -
April 14, 1935, Bryn Mawr, Pennsylvania, USA)



uniformity of time
(translation invariance
in time)

law of energy
conservation

homogeneity of space
(invariance with respect
to space translations)

momentum
conservation law

isotropy of space
(invariance with respect
to rotations)

angular momentum
conservation law



Symmetry breaking

• Violation of global translational invariance (inhomogeneity
and �niteness of space).

• Anisotropy, crystal defects.

• Spontaneous symmetry breaking in physics (for example, in
elementary particle physics).

• Unpaired internal organs (heart, liver, spleen, ...)

• Asymmetric functions of organs with mirror symmetry (eg
cerebral hemispheres, see research by Roger Sperry and
Michael Gazzaniga on split-brain syndrome in patients with
a severed corpus callosum).

Michael Gazzaniga. Who's In Charge? Free Will And The
Science Of The Brain. Ecco; Reprint edition (November 15,
2011).


