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Example.
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Two samples of sandstone
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Chemical dissolution of sandstone gives topological filtration.
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One-dimensional persistence diagrams (Dgm1) of two samples
under chemical dissolution of skeleton [Dmitriy Prokhorov, Vadim
Lisitsa, Yaroslav Bazaikin. Digital image reduction for the analysis
of topological changes in the pore space of rock matrix //
Computers and Geotechnics. 2021. V. 136, 104171].
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Stability of persistence diagrams

In what extent will Dgmp(f ) change, if we change function f ? We
can try at first represent change of f as sequence of small changes.

Let f : K → R and g :→ R be two monotonic functions. Define
straight-line homotopy F : K × [0, 1] → R between f and g by

F (σ, t) = (1− t)f (σ) + tg(σ),σ ∈ K .

Let denote ft(σ) = F (σ, t), then f0 = f , f1 = g . Let σ is a face of
τ . Then f (σ) ≤ f (τ), g(σ) ≤ g(τ) and therefore ft(σ) ≤ ft(τ).

Lemma. If f and g are monotonic then ft is monotonic for all
t ∈ [0, 1]

Yaroslav Bazaikin Sobolev Institute of Mathematics, Novosibirsk

Introduction to Computational Topology



Suppose that f and g are injective, that is for all simplexes
σ, τ ∈ K we have f (σ) ∕= f (τ) and g(σ) ∕= g(τ). Then ft is
injective with the exception of some particular t, where two
simplexes can have the same value.

If we consider ordering of K , compatible with f then there will be
finite number of changing this ordering keeping compatibility with
ft , and every change is transposing two simplexes.
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How transposing two simplexes affects reducing procedure of
boundary matrix ∂? And how this affects pairing i = low(j)?

Let ∂ is boundary matrix for some compatible ordering
{σ1, . . . ,σm}. We can represent matrix reducing as right
multiplication:
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So we have R = ∂V and if we take right inverse to V then

∂ = ∂VU = RU.

Recall that in this RU decomposition of boundary matrix ∂, R is
reduced upper triangular and U is upper triangular and invertible.

Consider transposition of two simplexes σi and σi+1. Then new
boundary matrix ∂′ has the form: ∂′ = P∂P , P2 = E .
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∂′ = P∂P = PRUP = (PRP)(PUP) = R ′U ′

We need additionally correct R and U to provide R ′U ′ to be a
correct RU decomposition.
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Second possibility (remark change of pairing!):
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Decomposition Lemma Transposition of two simplexes σi , σi+1

can change pairing i = low(k) and i + 1 = low(l) only in case
dimσi = dimσi+1 and pairing after changing looks like i = low(l),
i + 1 = low(k).
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How to measure the distance between two persistence diagrams X ,
Y ? Let x = (x1, x2) ∈ X and y = (y1, y2) ∈ Y .

‖x − y‖∞ = max{|x1 − y1|, |x2 − y2|}.

Let η : X → Y be some bijection (it always exists because X and
Y contain infinite number of points!). Let

|η|∞ = sup
x∈X

‖x − η(x)‖∞

We define bottleneck distance between persistence diagrams:

W∞(X ,Y ) = inf
η:X→Y

|η|

(inf is considered over all bijection η).

Yaroslav Bazaikin Sobolev Institute of Mathematics, Novosibirsk

Introduction to Computational Topology



If W∞(X ,Y ) = a then every point of X belongs to square with
edge length 2a with a center in some point of Y .

Properties of W∞:

1)W∞(X ,Y ) = 0 ⇔ X = Y ,

2)W∞(X ,Y ) = W∞(Y ,X ),

3)W∞(X ,Z ) ≤ W∞(X ,Y ) +W∞(Y ,Z ).
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Let f , g : K → R be two monotonic functions and define
homotopy ft = (1− t)f + tf , t ∈ [0, 1]. We obtain a family of
persistence diagrams in R̄2 ⋊ [0, 1], every point non-diagonal point
has the form x(t) = (ft(σ), ft(τ), t), σ, τ ∈ K (adding σ gives new
cycle, adding τ kills this cycle).
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We can find finite set of values 0 = t0. < t1 < . . . < tn+1 where
pairing changes. This implies that on the interval (ti , ti+1 we have
the same pairing and x(t) is a line segment which connects two
points on planes t = ti and t = ti+1.

In the moment ti+1 (if the point is off diagonal) we have only two
possibilities: or continue previous segment in the same direction; or
pairing changes and we continue with another segment.

Decompose all off-diagonal points x(t) into finite number of
piecewise straight lines of the following three types:
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1) starting at off-diagonal point of Dgmp(f0) and finishing at
off-diagonal point of Dgmp(f1);

2) starting at off-diagonal point of Dgmp(f0) and finishing on
diagonal for some t;

3) starting on diagonal for some t and finishing at off-diagonal
point of Dgmp(f1);

We can continue diagonal points at t ∈ (0, 1) by constant vertical
lines and obtain one-to one correspondence (bijection) η between
Dgmp(f ) and Dgmp(g).

The lines we obtain is called vines and collection of all vines is
vineyard.
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Let estimate |η| we construct.

The distance between endpoints of segment [x(ti )x(ti+1)] equals:

‖(fti+1(σ), fti+1(τ))− (fti (σ), fti (τ))‖∞ =

(ti+1 − ti )max{|f (σ)− g(σ)|, |f (τ)− g(τ)|}
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Let ν ∈ K is a simplex with maximal value of |f (ν)− g(ν)| which
we can introduce as L∞ distance on the space of functions on K :

‖f − g‖∞ = max
σ∈K

|f (σ)− g(σ)| = |f (ν)− g(ν)|.

Then

‖(fti+1(σ), fti+1(τ))− (fti (σ), fti (τ))‖∞ ≤ (ti+1 − ti )|f (ν)− g(ν)|.

Then distance between endpoints of vineyard can be estimated by

‖(f0(σ), f0(τ))− (f1(σ), f1(τ))‖∞ ≤ |f (ν)− g(ν)| = ‖f − g‖∞.
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Stability Theorem. Let K be simplicial complex and
f , g : K → R two monotonic functions. For each dimensions
following inequality holds:

W∞(Dgmp(f ),Dgmp(g)) ≤ ‖f − g‖∞.

Illustration in more general situation:
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Bottleneck distance between barcodes corresponding different
parameters of chemical dissolution of rock.
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Thank you for attention!
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