Introduction to Computational Topology

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

Online Summer School on Geometry and Topology, III 09.07.2021

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

< □ > < □ > < □ > < □ >

Example.

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

Two samples of sandstone

・ロア・雪ア・雪ア・雪 もんの

Sobolev Institute of Mathematics, Novosibirsk

Yaroslav Bazaikin

Chemical dissolution of sandstone gives topological filtration.

1.768 mm

Sobolev Institute of Mathematics, Novosibirsk

Yaroslav Bazaikin

One-dimensional persistence diagrams (Dgm_1) of two samples under chemical dissolution of skeleton [Dmitriy Prokhorov, Vadim Lisitsa, Yaroslav Bazaikin. Digital image reduction for the analysis of topological changes in the pore space of rock matrix // Computers and Geotechnics. 2021. V. 136, 104171].

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

Stability of persistence diagrams

In what extent will $Dgm_p(f)$ change, if we change function f? We can try at first represent change of f as sequence of small changes.

Let $f : K \to \mathbb{R}$ and $g :\to \mathbb{R}$ be two monotonic functions. Define straight-line homotopy $F : K \times [0,1] \to \mathbb{R}$ between f and g by

$$F(\sigma, t) = (1 - t)f(\sigma) + tg(\sigma), \sigma \in K.$$

Let denote $f_t(\sigma) = F(\sigma, t)$, then $f_0 = f$, $f_1 = g$. Let σ is a face of τ . Then $f(\sigma) \leq f(\tau)$, $g(\sigma) \leq g(\tau)$ and therefore $f_t(\sigma) \leq f_t(\tau)$.

Lemma. If f and g are monotonic then f_t is monotonic for all $t \in [0, 1]$

Sobolev Institute of Mathematics, Novosibirsk

イロト イポト イヨト イヨ

Yaroslav Bazaikin

Suppose that f and g are injective, that is for all simplexes $\sigma, \tau \in K$ we have $f(\sigma) \neq f(\tau)$ and $g(\sigma) \neq g(\tau)$. Then f_t is injective with the exception of some particular t, where two simplexes can have the same value.

If we consider ordering of K, compatible with f then there will be finite number of changing this ordering keeping compatibility with f_t , and every change is transposing two simplexes.

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

How transposing two simplexes affects reducing procedure of boundary matrix ∂ ? And how this affects pairing i = low(j)?

Let ∂ is boundary matrix for some compatible ordering $\{\sigma_1, \ldots, \sigma_m\}$. We can represent matrix reducing as right multiplication:

Sobolev Institute of Mathematics, Novosibirsk

Yaroslav Bazaikin

So we have $R = \partial V$ and if we take right inverse to V then

$$\partial = \partial V U = R U.$$

Recall that in this RU decomposition of boundary matrix ∂ , R is reduced upper triangular and U is upper triangular and invertible.

Consider transposition of two simplexes σ_i and σ_{i+1} . Then new boundary matrix ∂' has the form: $\partial' = P \partial P$, $P^2 = E$.

Introduction to Computational Topology

Yaroslav Bazaikin

$$\partial' = P\partial P = PRUP = (PRP)(PUP) = R'U'$$

We need additionally correct R and U to provide R'U' to be a correct RU decomposition.

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

Second possibility (remark change of pairing!):

Yaroslav Bazaikin

Decomposition Lemma Transposition of two simplexes σ_i , σ_{i+1} can change pairing i = low(k) and i + 1 = low(l) only in case dim $\sigma_i = \dim \sigma_{i+1}$ and pairing after changing looks like i = low(l), i + 1 = low(k).

Sobolev Institute of Mathematics, Novosibirsk

Introduction to Computational Topology

Yaroslav Bazaikin

How to measure the distance between two persistence diagrams X, Y? Let $x = (x_1, x_2) \in X$ and $y = (y_1, y_2) \in Y$.

$$||x - y||_{\infty} = \max\{|x_1 - y_1|, |x_2 - y_2|\}.$$

Let $\eta: X \to Y$ be some bijection (it always exists because X and Y contain infinite number of points!). Let

$$|\eta|_{\infty} = \sup_{x \in X} \|x - \eta(x)\|_{\infty}$$

We define *bottleneck distance* between persistence diagrams:

$$W_{\infty}(X,Y) = \inf_{\eta:X \to Y} |\eta|$$

(inf is considered over all bijection η).

Yaroslav Bazaikin

If $W_{\infty}(X, Y) = a$ then every point of X belongs to square with edge length 2a with a center in some point of Y.

Properties of W_{∞} :

$$1)W_{\infty}(X,Y) = 0 \Leftrightarrow X = Y,$$

$$2)W_{\infty}(X,Y) = W_{\infty}(Y,X),$$

$$3)W_{\infty}(X,Z) \le W_{\infty}(X,Y) + W_{\infty}(Y,Z).$$

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

Let $f, g: K \to \mathbb{R}$ be two monotonic functions and define homotopy $f_t = (1 - t)f + tf$, $t \in [0, 1]$. We obtain a family of persistence diagrams in $\mathbb{R}^2 \rtimes [0, 1]$, every point non-diagonal point has the form $x(t) = (f_t(\sigma), f_t(\tau), t)$, $\sigma, \tau \in K$ (adding σ gives new cycle, adding τ kills this cycle).

Yaroslav Bazaikin

Introduction to Computational Topology

Sobolev Institute of Mathematics, Novosibirsk

We can find finite set of values $0 = t_0$. $< t_1 < \ldots < t_{n+1}$ where pairing changes. This implies that on the interval (t_i, t_{i+1}) we have the same pairing and x(t) is a line segment which connects two points on planes $t = t_i$ and $t = t_{i+1}$.

In the moment t_{i+1} (if the point is off diagonal) we have only two possibilities: or continue previous segment in the same direction; or pairing changes and we continue with another segment.

Decompose all off-diagonal points x(t) into finite number of piecewise straight lines of the following three types:

A D F A B F A B F A B

1) starting at off-diagonal point of $Dgm_p(f_0)$ and finishing at off-diagonal point of $Dgm_p(f_1)$;

2) starting at off-diagonal point of $Dgm_p(f_0)$ and finishing on diagonal for some t;

3) starting on diagonal for some t and finishing at off-diagonal point of $Dgm_p(f_1)$;

We can continue diagonal points at $t \in (0, 1)$ by constant vertical lines and obtain one-to one correspondence (bijection) η between $Dgm_p(f)$ and $Dgm_p(g)$.

The lines we obtain is called *vines* and collection of all vines is *vineyard*.

ヘロット (日) マヨット

Let estimate $|\eta|$ we construct.

The distance between endpoints of segment $[x(t_i)x(t_{i+1})]$ equals:

$$\|(f_{t_{i+1}}(\sigma), f_{t_{i+1}}(\tau)) - (f_{t_i}(\sigma), f_{t_i}(\tau))\|_{\infty} = (t_{i+1} - t_i) \max\{|f(\sigma) - g(\sigma)|, |f(\tau) - g(\tau)|\}$$

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

Let $\nu \in K$ is a simplex with maximal value of $|f(\nu) - g(\nu)|$ which we can introduce as L_{∞} distance on the space of functions on K:

$$\|f-g\|_{\infty} = \max_{\sigma \in \mathcal{K}} |f(\sigma)-g(\sigma)| = |f(\nu)-g(\nu)|.$$

Then

$$\|(f_{t_{i+1}}(\sigma), f_{t_{i+1}}(\tau)) - (f_{t_i}(\sigma), f_{t_i}(\tau))\|_{\infty} \le (t_{i+1} - t_i)|f(\nu) - g(\nu)|.$$

Then distance between endpoints of vineyard can be estimated by

$$\|(f_0(\sigma), f_0(\tau)) - (f_1(\sigma), f_1(\tau))\|_{\infty} \le |f(\nu) - g(\nu)| = \|f - g\|_{\infty}.$$

Sobolev Institute of Mathematics, Novosibirsk

Image: A math a math

Yaroslav Bazaikin

Stability Theorem. Let *K* be simplicial complex and $f, g: K \to \mathbb{R}$ two monotonic functions. For each dimensions following inequality holds:

$$W_{\infty}(Dgm_p(f), Dgm_p(g)) \leq \|f-g\|_{\infty}.$$

Illustration in more general situation:

Sobolev Institute of Mathematics, Novosibirsk

Yaroslav Bazaikin

Bottleneck distance between barcodes corresponding different parameters of chemical dissolution of rock.

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

References.

[1] Herbert Edelsbrunner, John L. Harer. Computational Topology. An Introduction. AMS. 2010.

[2] Afra J Zomorodian. Topology for computing. Cambridge Univ Psess. 2005

Sobolev Institute of Mathematics, Novosibirsk

イロト イヨト イヨト イ

Introduction to Computational Topology

Yaroslav Bazaikin

Thank you for attention!

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk