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Let for every integer p we have np = rank(Cp) be the number of
simplices of dimension p. Fix some order of simplices σj ,
j = 1, . . . , np. Represent homomorphism ∂ : Cp → Cp−1 by matrix

with respect to this order: ∂(σp
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(every value aij = 0 or 1). Simple linear algebra implies

rank(Bp−1) = rank(∂p),

rank(Zp) = np − rank(Bp−1) = np − rank(∂p).
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Up to this moment we use natural basis of Cp formed by simplices.
Let consider change of basis in Cp and Cp−1, independently. We
will perform change of basis as consequence of two elementary
operations:

1) exchanging of two basis vectors:

e1, . . . , ei , . . . , ej , . . . , en → e1, . . . , ej , . . . , ei , . . . , en

2) add some basis vector to other:

e1, . . . , ei , . . . , ej , . . . , en → e1, . . . , ei , . . . , ei + ej , . . . , en

Remark that rank(∂p) (and ranks of Zp, Bp) does not depend of
change of basis.

In what extent we can simplify matrix ∂p by combination of such
elementary operations?
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Elementary operations for matrix:

1) Cp: exchanging of columns; Cp−1: exchanging of rows.

2) Cp: adding one column to other; Cp−1: adding one row to other.

Modification of classical Gauss method allows to reduce matrix ∂p
by elementary operations to the following normal form:
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Start Reduce(1) for Np = ∂p. Finish with Np in normal form.

void Reduce(x)
if there exists k ≥ x , l ≥ x with Np[k , l ] = 1 then

exchange rows x and k ; exchange columns x and l ;
for i = x + 1 to np−1 do

if Np[i , x ] = 1 then
add row x to row i ;

endif
endfor
for j = x + 1 to np do

if Np[x , j ] = 1 then
add column x to column j ;

endif
endfor
Reduce(x+1);

endif
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Illustration of work of the above algorithm:

Example 1. |K | = D2, K consists of one 2-dimensional simplex.
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Then rank(B0) = 2, rank(B1) = 1, rank(B2) = 0, rank(Z0) = 3,
rank(Z1) = 1, rank(Z2) = 0 and

b0(K ) = 1,H0(K ) = Z2, b1(K ) = 0,H1(K ) = 0,

Example 2. |K | = S1, K consists of three segments:

In this case rank(B0) = 2, rank(B1) = 0, rank(B2) = 0,
rank(Z0) = 3, rank(Z1) = 1, rank(Z2) = 0 and

b0(K ) = 1,H0(K ) = Z2, b1(K ) = 1,H1(K ) = Z2.

By the way, Examples 1 and 2 prove Brouwer Foxed Point
Theorem (we need to consider H1 as topological invariant).
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Look more precisely at homology group H0 and zero Betti number
b0. They have very clear geometric interpretation.

Let K be simplicial space. We say that two vertices v and w from
K are connected if there exists collection of 1-dimensional
simplices [vp1], [p1p2], . . . , [pnw ] (piecewise linear path connecting
vertexes v and w). It is easy to see that property to be connected
is the equivalence relation on the set of all 0-dimensional simplices
(vertexes) in K .
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Equivalence classes are connected components of K . The number
of connected components evidently is a topological invariant.

Theorem The number of connected components of simplicial
complex K is equals to zero Betti number b0(K ).

Proof. The main observation is: if v and w are equivalent then

∂1([vp1] + [p1p2] + . . .+ [pkw ]) = v + w

Therefore v +B0 = w +B0 in Z0 if and only if v is connected to w .
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Persistent Homology

Let X be topological space and f : X → R be continuous function.
Excursion set of function f is the subset Xa = {p ∈ X |f (p) ≤ a}
for some a. Define Ca be the set of connected components of Xa.
If a ≤ b then Xa ⊂ Xb and we obtain ta map

f ba : Ca → Cb.
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More formally, in the space Γ(f ) = {(p, a) ∈ X × R|f (p) ≤ a}
consider equivalence relation: we say that (p, a) ∼ (q, b) if a = b
and p, q belongs to the same component of Ca. The topological
space T (f ) = Γ(f )/ ∼ is a tree and is called merge tree of f

To produce barcode B(f ) we need to cutoff branches of T (f ) in
the merge points according to rule:

Elder Rule. The older of merged branches continues, younger
ones end.
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Let K be simplicial complex and f : K → R be some function. We
say that f is monotonic if for each face τ of every simplex σ from
K inequality f (τ) ≤ f (σ) holds. If f is monotonic then
K (a) = f −1(−∞, a] is again a simplicial complex (subcomplex in
K ).

Let m be the number of simplexes in K and let a1 < a2 < . . . < an
are all the function values. Then denoting a0 = −∞ and
Ki = K (ai ) we obtain increasing sequence of simplicial cmplexes:

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Kn = K .

This sequence is called filtration. Filtration describes the
construction of K in n steps by adding several simplexes at a time.
The question arises: how does the topological complexity increase
by these steps?
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We have corresponding chain of homomorphisms of homology
groups:

0 = Hp(K0) → Hp(K1) → . . . → Hp(Kn) = Hp(K ).

What happens on every step from Hp(Ki−1 to Hp(Ki )? There are
two possibility: some new classes born; and some old classes die or
merge with each other. Let f i ,jp : Hp(Ki ) → Hp(Kj) be some
fragment of above chain, i ≤ j .

The p-th persistent homology groups are H i ,j
p = im(f i ,jp ) for

1 ≤ i ≤ j ≤ n. The corresponding p-th persistent Betti numbers
are the ranks of these groups, bi ,jp = rank(H i ,j

p ).

It is obvious that H i ,i
p = Hp(Ki ) and bi ,ip = bp(Ki ).
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Formulate Elder Rule in this situation. Letting γ ∈ Hp(Ki ), we say

it is born at Ki if γ /∈ H i−1,i
p . Furthermore, if γ is born at Ki then

it dies entering Kj if it merges with an older class as we go from

Kj−1 to Kj , that is, f
j ,j−1
p (γ) /∈ H i−1,j−1

p but f i ,jp (γ) ∈ H i−1,j
p .
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Consider number µi ,j
p of p-dimensional classes which born at Ki

dying entering Kj :

µi ,j
p = (bi ,j−1

p − bi ,jp )− (bi−1,j−1
p − bi−1,j

p ), i < j .

The p-th persistence diagram of the filtration is the subset of
extended real plane R̄2 consisting of points with multiplicities:

Dgmp(f ) = {µi ,j
p · (ai , aj)|1 ≤ i < j ≤ n} ∪ {∞ · (a, a)|a ∈ R}
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Theorem. For any pair of indices 0 ≤ k ≤ l ≤ n

bk,lp =
(

i≤k

(

j>l

µi ,j
p .
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Let f be monotonic simplicial complex. Order all simplexes:
K = {σ1, . . . ,σm}. We say that ordering is compatible with f , if
f (σi ) < f (σj) implies i < j . It is clear that compatible ordering
exists: we can order firstly simplexes with f -value a1, then a2 and
so on . . .

Compatible ordering has following property: for every k ,
{σ1,σ2, . . . ,σk} is a simplicial subcomplex in K . We use
compatible ordering to construct boundary matrix which store all
information about all boundary operators in all dimensions:

∂[i , j ] =

)
1, if σi is a co-dimension one face of σj ;
0, otherwise.
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As far as ordering is compatible with monotonic function, matrix ∂
is upper triangular.
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Let low(j) be the index of the lowest non-zero element in column
with number j (if entire column is zero then low(j) is not defined).
We say that 0-1 matrix R is reduced if low(j1) ∕= low(j2) for every
non-zero columns j1 ∕= j2.
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Algorithm (we use adding operation only because we can not
independently exchange columns and raws):

R = ∂
for j = 1 to m do

while there exists j0 < j with low(j0) = low(j) do
add column j0 to column j ;

endfor

It is clear that R again is upper triangular.
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#Zerop(R) is the number of p-dimensional zero columns;
#Lowp(R) is the number of p-dimensional rows containing low(j).

Comparing matrix R with normal form of boundary operator
matrix we can conclude:

#Zerop(R) = rank(Zp),#Lowp(R) = rank(Bp),

bp = #Zerop(R)−#Lowp(R).
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Relation i = low(j) is a pairing between (p − 1) simplex σi and
p-simplex σj .

Lemma. Above defined pairing does not depend of way or
reducing matrix ∂ to matrix R

Let column j of R at some stage of algorithm has its final form.
There are two possibilities:

1) Column j of R is zero. We can think that we add simplex σj to
simplicial complex consisting of σ1, . . . ,σj−1 and this addition
generates new cycle (with zero boundary). We call σj positive
simplex.
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2) Column j of R is non-zero. Simplexes in column j form
boundary of simplex σj and therefore represent cycle. This cycle
becomes trivial in homology group (dies) after adding σj . We call
σj negative simplex.

So, cycle represented by simplexes in column j dies at step number
j (in opposite case we would find combination of columns with
indices less than j with zero sum - a contradiction with the fact
that R is reduced up to number j).

When this cycle was born? It born in moment i = low(j)! In
opposite case we find column j0 with nonzero row i = low(j) - a
contradiction to algorithm.
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Theorem. Point (ai , aj) (i , j > 0) is a point with positive
multiplicity in Dgmp(f ) if and only if i = low(j) and σi is a
simplex of dimension p. Point (ai ,∞) is a point with positive
multiplicity in Dgmp(f ) if and only if column i is zero but row i
does not contain the lowest element.

The latter case corresponds to cycles which born at some moment
ai but never die in K .
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Thank you for attention!
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