Introduction to Computational Topology

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

Online Summer School on Geometry and Topology, II 08.07.2021

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

イロト イポト イヨト イ

Let for every integer p we have $n_p = rank(C_p)$ be the number of simplices of dimension p. Fix some order of simplices σ_j , $j = 1, \ldots, n_p$. Represent homomorphism $\partial : C_p \to C_{p-1}$ by matrix with respect to this order: $\partial(\sigma_i^p) = \sum_j a_j^i \sigma_j^{p-1}$, $\partial = (a_j^i)_{j=1,\ldots,n_{p-1}}^{i=1,\ldots,n_p}$.

If
$$c = \sum_{i} a_{i} \sigma_{i}^{p}$$
 then

$$\partial_{p}(c) = \begin{pmatrix} a_{1}^{1} & a_{1}^{2} & \dots & a_{1}^{n_{p}} \\ a_{2}^{1} & a_{2}^{2} & \dots & a_{2}^{n_{p}} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n_{p-1}}^{1} & a_{n_{p-1}}^{2} & \dots & a_{n_{p-1}}^{n_{p}} \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n_{p}} \end{pmatrix}$$

(every value $a_j^i = 0$ or 1). Simple linear algebra implies

$$rank(B_{p-1}) = rank(\partial_p),$$

$$rank(Z_p) = n_p - rank(B_{p-1}) = n_p - rank(\partial_p).$$

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

Up to this moment we use natural basis of C_p formed by simplices. Let consider change of basis in C_p and C_{p-1} , independently. We will perform change of basis as consequence of two elementary operations:

1) exchanging of two basis vectors:

$$e_1,\ldots,e_i,\ldots,e_j,\ldots,e_n \rightarrow e_1,\ldots,e_j,\ldots,e_i,\ldots,e_n$$

2) add some basis vector to other:

$$e_1,\ldots,e_i,\ldots,e_j,\ldots,e_n \rightarrow e_1,\ldots,e_i,\ldots,e_i+e_j,\ldots,e_n$$

Remark that $rank(\partial_p)$ (and ranks of Z_p , B_p) does not depend of change of basis.

In what extent we can simplify matrix ∂_p by combination of such elementary operations?

Yaroslav Bazaikin

Introduction to Computational Topology

Sobolev Institute of Mathematics, Novosibirsk

Elementary operations for matrix:

- 1) C_p : exchanging of columns; C_{p-1} : exchanging of rows.
- 2) C_p : adding one column to other; C_{p-1} : adding one row to other.

Modification of classical Gauss method allows to reduce matrix ∂_p by elementary operations to the following normal form:

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

Start Reduce(1) for $N_p = \partial_p$. Finish with N_p in normal form.

```
void Reduce(x)
   if there exists k \ge x, l \ge x with N_p[k, l] = 1 then
     exchange rows x and k; exchange columns x and l;
     for i = x + 1 to n_{p-1} do
       if N_p[i, x] = 1 then
          add row x to row i:
        endif
     endfor
     for j = x + 1 to n_p do
        if N_p[x, j] = 1 then
          add column x to column j;
        endif
     endfor
     Reduce(x+1);
   endif
                                              ヘロット (日) マヨット
```

Yaroslav Bazaikin

Illustration of work of the above algorithm:

Example 1. $|K| = D^2$, K consists of one 2-dimensional simplex.

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

Then
$$rank(B_0) = 2$$
, $rank(B_1) = 1$, $rank(B_2) = 0$, $rank(Z_0) = 3$,
 $rank(Z_1) = 1$, $rank(Z_2) = 0$ and
 $b_0(K) = 1$, $H_0(K) = \mathbb{Z}_2$, $b_1(K) = 0$, $H_1(K) = 0$,

Example 2. $|K| = S^1$, K consists of three segments:

$$K = \bigwedge_{0}^{1} \partial_{0} = \square \partial_{1} = \bigcap_{1}^{\infty} \partial_{2} = \partial_{3}^{2} \square = 0$$

In this case $rank(B_0) = 2$, $rank(B_1) = 0$, $rank(B_2) = 0$, $rank(Z_0) = 3$, $rank(Z_1) = 1$, $rank(Z_2) = 0$ and $b_0(K) = 1$, $H_0(K) = \mathbb{Z}_2$, $b_1(K) = 1$, $H_1(K) = \mathbb{Z}_2$.

By the way, Examples 1 and 2 prove Brouwer Foxed Point Theorem (we need to consider H_1 as topological invariant).

Yaroslav Bazaikin

Look more precisely at homology group H_0 and zero Betti number b_0 . They have very clear geometric interpretation.

Let K be simplicial space. We say that two vertices v and w from K are connected if there exists collection of 1-dimensional simplices $[vp_1], [p_1p_2], \ldots, [p_nw]$ (piecewise linear path connecting vertexes v and w). It is easy to see that property to be connected is the equivalence relation on the set of all 0-dimensional simplices (vertexes) in K.

Yaroslav Bazaikin

Equivalence classes are *connected components* of K. The number of connected components evidently is a topological invariant.

Theorem The number of connected components of simplicial complex K is equals to zero Betti number $b_0(K)$.

Proof. The main observation is: if v and w are equivalent then

$$\partial_1([vp_1] + [p_1p_2] + \ldots + [p_kw]) = v + w$$

Therefore $v + B_0 = w + B_0$ in Z_0 if and only if v is connected to w.

Yaroslav Bazaikin

Persistent Homology

Let X be topological space and $f : X \to \mathbb{R}$ be continuous function. Excursion set of function f is the subset $X_a = \{p \in X | f(p) \le a\}$ for some a. Define C_a be the set of connected components of X_a . If $a \le b$ then $X_a \subset X_b$ and we obtain ta map

$$f_a^b:C_a
ightarrow C_b.$$

Sobolev Institute of Mathematics, Novosibirsk

Yaroslav Bazaikin

More formally, in the space $\Gamma(f) = \{(p, a) \in X \times \mathbb{R} | f(p) \le a\}$ consider equivalence relation: we say that $(p, a) \sim (q, b)$ if a = band p, q belongs to the same component of C_a . The topological space $T(f) = \Gamma(f) / \sim$ is a tree and is called *merge tree* of f

To produce barcode B(f) we need to cutoff branches of T(f) in the merge points according to rule:

Elder Rule. The older of merged branches continues, younger ones end.

Sobolev Institute of Mathematics, Novosibirsk

Yaroslav Bazaikin

Let K be simplicial complex and $f : K \to \mathbb{R}$ be some function. We say that f is monotonic if for each face τ of every simplex σ from K inequality $f(\tau) \leq f(\sigma)$ holds. If f is monotonic then $K(a) = f^{-1}(-\infty, a]$ is again a simplicial complex (subcomplex in K).

Let *m* be the number of simplexes in *K* and let $a_1 < a_2 < ... < a_n$ are all the function values. Then denoting $a_0 = -\infty$ and $K_i = K(a_i)$ we obtain increasing sequence of simplicial cmplexes:

$$\emptyset = K_0 \subset K_1 \subset \ldots \subset K_n = K.$$

This sequence is called *filtration*. Filtration describes the construction of K in n steps by adding several simplexes at a time. The question arises: how does the topological complexity increase by these steps?

イロト イポト イヨト イヨ

We have corresponding chain of homomorphisms of homology groups:

$$0 = H_{\rho}(K_0) \rightarrow H_{\rho}(K_1) \rightarrow \ldots \rightarrow H_{\rho}(K_n) = H_{\rho}(K).$$

What happens on every step from $H_p(K_{i-1} \text{ to } H_p(K_i)$? There are two possibility: some new classes born; and some old classes die or merge with each other. Let $f_p^{i,j}: H_p(K_i) \to H_p(K_j)$ be some fragment of above chain, $i \leq j$.

The *p*-th persistent homology groups are $H_p^{i,j} = im(f_p^{i,j})$ for $1 \le i \le j \le n$. The corresponding *p*-th persistent Betti numbers are the ranks of these groups, $b_p^{i,j} = rank(H_p^{i,j})$.

It is obvious that $H_p^{i,i} = H_p(K_i)$ and $b_p^{i,i} = b_p(K_i)$.

4 D K 4 B K 4 B K 4

Formulate Elder Rule in this situation. Letting $\gamma \in H_p(K_i)$, we say it is born at K_i if $\gamma \notin H_p^{i-1,i}$. Furthermore, if γ is born at K_i then it dies entering K_j if it merges with an older class as we go from K_{j-1} to K_j , that is, $f_p^{j,j-1}(\gamma) \notin H_p^{i-1,j-1}$ but $f_p^{i,j}(\gamma) \in H_p^{i-1,j}$.

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

イロト イポト イヨト イヨ

Consider number $\mu_p^{i,j}$ of *p*-dimensional classes which born at K_i dying entering K_j :

$$\mu_p^{i,j} = (b_p^{i,j-1} - b_p^{i,j}) - (b_p^{i-1,j-1} - b_p^{i-1,j}), i < j.$$

The *p*-th persistence diagram of the filtration is the subset of extended real plane \mathbb{R}^2 consisting of points with multiplicities:

$$\mathsf{Dgm}_{p}(f) = \{\mu_{p}^{i,j} \cdot (\mathsf{a}_{i},\mathsf{a}_{j}) | 1 \leq i < j \leq n\} \cup \{\infty \cdot (\mathsf{a},\mathsf{a}) | \mathsf{a} \in \mathbb{R}\}$$

Sobolev Institute of Mathematics, Novosibirsk

Yaroslav Bazaikin

Theorem. For any pair of indices $0 \le k \le l \le n$

$$b_p^{k,l} = \sum_{i \le k} \sum_{j > l} \mu_p^{i,j}.$$

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

Let f be monotonic simplicial complex. Order all simplexes: $K = \{\sigma_1, \ldots, \sigma_m\}$. We say that ordering is compatible with f, if $f(\sigma_i) < f(\sigma_j)$ implies i < j. It is clear that compatible ordering exists: we can order firstly simplexes with f-value a_1 , then a_2 and so on ...

Compatible ordering has following property: for every k, $\{\sigma_1, \sigma_2, \ldots, \sigma_k\}$ is a simplicial subcomplex in K. We use compatible ordering to construct boundary matrix which store all information about all boundary operators in all dimensions:

$$\partial[i,j] = \begin{cases} 1, & \text{if } \sigma_i \text{ is a co-dimension one face of } \sigma_j; \\ 0, & \text{otherwise.} \end{cases}$$

Yaroslav Bazaikin

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

As far as ordering is compatible with monotonic function, matrix ∂ is upper triangular.

Yaroslav Bazaikin

Introduction to Computational Topology

Sobolev Institute of Mathematics, Novosibirsk

Let low(j) be the index of the lowest non-zero element in column with number j (if entire column is zero then low(j) is not defined). We say that 0-1 matrix R is reduced if $low(j_1) \neq low(j_2)$ for every non-zero columns $j_1 \neq j_2$.

Sobolev Institute of Mathematics, Novosibirsk

Yaroslav Bazaikin

Algorithm (we use adding operation only because we can not independently exchange columns and raws):

```
R = \partial
for j = 1 to m do
while there exists j_0 < j with low(j_0) = low(j) do
add column j_0 to column j;
endfor
```

It is clear that R again is upper triangular.

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

 $#Zero_p(R)$ is the number of *p*-dimensional zero columns; $#Low_p(R)$ is the number of *p*-dimensional rows containing low(j).

Comparing matrix R with normal form of boundary operator matrix we can conclude:

$$#Zero_p(R) = rank(Z_p), #Low_p(R) = rank(B_p),$$
$$b_p = #Zero_p(R) - #Low_p(R).$$

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk

Relation i = low(j) is a pairing between (p-1) simplex σ_i and *p*-simplex σ_j .

Lemma. Above defined pairing does not depend of way or reducing matrix ∂ to matrix R

Let column j of R at some stage of algorithm has its final form. There are two possibilities:

1) Column *j* of *R* is zero. We can think that we add simplex σ_j to simplicial complex consisting of $\sigma_1, \ldots, \sigma_{j-1}$ and this addition generates new cycle (with zero boundary). We call σ_j positive simplex.

< □ > < □ > < □ > < □ >

2) Column *j* of *R* is non-zero. Simplexes in column *j* form boundary of simplex σ_j and therefore represent cycle. This cycle becomes trivial in homology group (dies) after adding σ_j . We call σ_j negative simplex.

So, cycle represented by simplexes in column j dies at step number j (in opposite case we would find combination of columns with indices less than j with zero sum - a contradiction with the fact that R is reduced up to number j).

When this cycle was born? It born in moment i = low(j)! In opposite case we find column j_0 with nonzero row i = low(j) - a contradiction to algorithm.

< □ > < □ > < □ > < □ >

Theorem. Point (a_i, a_j) (i, j > 0) is a point with positive multiplicity in $Dgm_p(f)$ if and only if i = low(j) and σ_i is a simplex of dimension p. Point (a_i, ∞) is a point with positive multiplicity in $Dgm_p(f)$ if and only if column i is zero but row i does not contain the lowest element.

The latter case corresponds to cycles which born at some moment a_i but never die in K.

Thank you for attention!

Yaroslav Bazaikin

Sobolev Institute of Mathematics, Novosibirsk