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Basic Concepts of Algebraic Topology

Given set X a topology τ on X is some family of subsets of X with
the properties:

1) ∅,X ∈ τ ;

2) if U1, . . . ,Un ∈ τ then ∩n
i=1Ui ∈ τ ;

3) if Uα ∈ τ,α ∈ A then ∪α∈AUα ∈ τ .

Pair (X , τ) is called topological space.

This definition is the formal mathematical base for operation with
intuitive concept of ”being in neighborhood”: we call subset
V ⊂ X to be a neighborhood of a point p ∈ X if there exists
U ∈ τ such that p ∈ U ⊂ V .
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Let X ,Y be two topological spaces. We say that map f : X → Y
is continuous if V ∈ τ(Y ) implies f −1(V ) ∈ τ(X ). Bijective
f : X → Y with both continuous f and f −1 is called
homeomorphism.

One of general problems of algebraic topology is to classify all
topological spaces with respect to property to be homeomorphic
(this problem is impossible to solve in general). Consider weaker
problem of homotopy classification.
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Let f0, f1 : X → Y be two continuous maps. Homotopy between f0
and f1 is a contnuous map F : X × [0, 1] → Y with the following
properties:

F (p, 0) = f0(p),F (p, 1) = f1(p), p ∈ X .

Denoting ft(p) = F (p, t) we can think of homotopy as a
continuous family maps ft connecting f0 and f1.
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We say f and g are homotopic if there exists homotopy between
them, write f ∼ g . Map f : X → Y is called homotopy
equivalence if there exists map g : Y → X such that:

f ◦ g ∼ idY , g ◦ f ∼ idX .

If homotopy equivalence exists we say that X and Y are homotopy
equivalent. Remark that homotopy equivalence doesn’t have to be
a bijection:

It is obvious that homeomorphism is homotopy equivalence so
homotopy classification is weaker problem than homeomorphism
classification.
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Let we associate each topological space X with a certain group
H(X ) satisfying the following properties:

1) every map f : X → Y is associated with a certain group
homomorphism f∗ : H(X ) → H(Y );

2) id∗ = id , that is identical map id(p) = p is associated with
identical group homomorphism;

3) (f ◦ g)∗ = f∗ ◦ g∗;

4) if f ∼ g then f∗ = g∗.

It is easy to derive from above properties that if X is homotopy
equivalent to Y then H(X ) is isomorphic (as a group) to H(Y ).
This allow to move the problem to group theory which can be
much more constructive and easy to solve.
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Brouwer’s Fixed Point Theorem. Let f : D2 → D2 is
continuous. Then there exist fixed point p ∈ D2: f (p) = p.

Idea of proof: assuming no fixed points we construct continuous
map g : D2 → S1 satisfies the property: g(p) = p, for all p ∈ S1.
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The latter property can be formulated on the language of
commutative diagrams:

If now we construct some invariant H such that H(D2) = 0 and
H(S1) ∕= 0 then the contradiction follows from the right diagram
(which finishes proof of the fixed point theorem).
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What would be a constructive way to describe topological space?
One approach is very successful both in algebraic and
computational topology: simplicial complexes.

Elementary brick of simplicial complex: simplex of dimension n is
defined as convex hull of n + 1 points in general position.
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Let p0, . . . , pn ∈ RN are in general position for sufficiently large N.
We denote by σ = [p0, . . . , pn] simplex generated by these points.
If p ∈ σ then

p = t0p0 + t1p1 + . . .+ tnpn,
n!

i=0

ti = 1,

where (t0, . . . , tn) are barycentric coordinates of p in σ.
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Every subset pi1 , pi2 , . . . , pik , 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n defines
face of σ of co-dimension k by equation ti1 = ti2 = . . . = tik = 0.
Remaining coordinates defines barycentric coordinate system in the
face.

Points pi , i = 0, . . . , n are faces of co-dimension n and is called
vertexes of σ.

We denote ∂iσ, i = 0, . . . , n the faces of co-dimension 1
(hyper-faces).
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A simplicial complex K is a set of simplices that lies in RN and
satisfies the following conditions:

1) every face of a simplex from K is also in K ;

2) the non-empty intersection of any two simplices from K is a
face of both simplices.

(left: simplicial complex; right: not a simplicial complex)

Support of K is topological space |K | = ∪K ⊂ RN .
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To storage simplicial complex we don’t need to know all vertexes
of all simplices. The concept of abstract simplicial complex reduces
topological space to finite combinatorial data.

Let S be non-empty finite set and K be a collection of non-empty
subsets of S . We say that K is abstract simplicial complex if for
every set σ ∈ K and for every τ ⊂ σ, we have τ ∈ K .

It is easy to see that putting S to be a set of all vertexes and K to
consist of collection of vertexes of simplices we obtain abstract
simplicial complex defined by simmplicial complex. Conversely, we
always can restore simlicial complex by abstract simplicial complex.
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We can expand barycentric coordinates to whole simlicial complex.
For simlicial complex K let V (K ) denote the set of all vertexes of
K , V (K ) = {v1, v2, . . . , vn}.

For every vertex vi and simplex σ ∋ vi we have barycentric
coordinate ti : σ → R. We can use the same notation for these
coordinates in different simplexes because they are compatible in
common faces. Put ti = 0 for all points in all simplexes which
doesn’t contain vi .
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Let K and L be two simplicial complexes. Let V (K ) = {v1, . . . , vn}
V (L) = {w1, . . . ,wk}. Map ϕ : V (K ) → V (L) is vertex map if for
any simplex σ from K all vertexes of σ are mapped to vertexes of
the unique simplex from L. This property correctly defines map
f : K → L which we call simplicial map.

Now we can define continuous map f : |K | → |L| as follows:

f (p) =
n!

i=0

ti (p)ϕ(vi ), p ∈ |K |.
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A simplicial complex L is a subdivision of another simplicial
complex K if |L| = |K | and every simplex in L is contained in a
simplex in K . Consider one possibility of subdivision, barycentric
subdivision L = Sd(K ):
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Theorem. Let K , L be simlicial complexes and f : |K | → |L| be
continuous map (not simplicial!). Then there exist n-step
subdivision Sdn(K ) and simplicial map g : Sdn(K ) → L such that
g : |Sdn(K )| = |K | → |L| is homotopic to f .
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Let K be simplicial complex. For every integer p ≥ 0 define group
Cp = Cp(K ) of p-dimensional chains in K :

Cp =

"
#

$
!

j

ajσ
p
j | dim(σp

j ) = p, aj ∈ Z2 = {0, 1}

%
&

' .

We can think of Cp as a vector space generated by basis consisting
of all p-dimensional simplices with coefficients 0 or 1 with
coordinate wise addition operation.

Coefficients satisfy relations: 0 + 0 = 1+ 1 = 0, 0 + 1 = 1+ 0 = 1.
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Define boundary homomorphism ∂p = ∂ : Cp → Cp−1 by the
following:

∂(σ) =

p!

i=0

∂iσ,σ ∈ K , dim(σ) = p,

∂(
!

j

ajσ
p
j ) =

!

j

aj∂(σ
p
j ).

Theorem. ∂2 = ∂ ◦ ∂ = 0.

Proof:
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A chain c ∈ Cp is called cycle if ∂(c) = 0. We denote Zp the
group of all cycles of dimension p.

A chain c ∈ Cp is called boundary if c = ∂(c ′) for some c ′ ∈ Cp+1.
The group of all boundaries is denoted by Bp.

We have Bp ⊂ Zp from above theorem.

Roughly speaking difference dim(Zp)− dim(Bp) measures number
of p-dimensional ”holes”.
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Define n-dimensional homology group Hp(K ) as follows:

Hp(K ) =
Zp(K )

Bp(K )
(factor − group of abelian groups)

Rank of homology group
bp(K ) = rank(Hp(K )) = rank(Zp(K ))− rank(Bp(K )) is called
p-dimensional Betti number (”number of p-dimensional halls”).
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Let f : K → L be simplicial map. Then f induces hmomorphism

f : Cp(K ) → Cp(L)

with the property
∂p ◦ f = f ◦ ∂p.

Then f (Zp(K )) ⊂ Zp(L) and f (Bp(K )) ⊂ Bp(L). This defines
homomorphism

fp : Hp(K ) → Hp(L).

Theorem. If f : |K | → |L| is homotopic to g : |K | → |L| then
fp = gp for all p.

We can expand definition of fp to all continuous f : |K | → |L|
applying simplicial map g : Sdn(K ) → L.
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Theorem. Let K and L be two simplicial complexes and |K | is
homeomorphic to |L|. Then group Hn(K ) is isomorphic to Hn(L).
In particular, bn(K ) = bn(L) for all integer n ≥ 0.

Let prove one important consequence of this theorem.

Euler characteristics χ(K ) of simplicial complex K is the number

χ(K ) = a0 − a1 + a2 − . . .+ (−1)kak + . . . ,

where ak = rank(Ck) be the number of k-dimensional simplices in
K .

Euler-Poincaré Theorem. For simplicial complex K we have

χ(K ) = b0(K )− b1(K ) + b2(K )− . . .+ (−1)kbk(K ) + . . . ,

and χ(K ) = χ(L) in the conditions of the above theorem.
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Proof.

Zi = Bi ⊕ Zi
Bi

= Bi ⊕ Hi ,

Ci = Zi ⊕ Ci
Zi

= Zi ⊕ Bi−1 = Hi ⊕ Bi ⊕ Bi−1.

Then ai = rank(Ci ) = bi + rank(Bi ) + rank(Bi−1).

Now it is evident that
χ(K ) = a0−a1+a2−a3+. . . = b0(K )−b1(K )+b2(K )−b3(K )+. . ..
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What are Euler characteristics and Betti numbers of the following
topological spaces?

(left: SEM of aluminium oxide catalyst with artificially created
macro-pores; right: the model of Bentheimer sandstone)
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Thank you for attention!
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