Quotients of \mathbb{R}^{8} § Reduced Holonomy

Simon Salamon

In honour of Dmitri Alekseevsky
9 September 2020
...contained in this talk include

- Riemannian holonomy groups
- Einstein metrics
- Homogeneous spaces
- Quaternionic geometry
- Twistor spaces
[ABS] B.Acharya, R.Bryant, S. Salamon: in DGA $20 \underline{20}$
[KL] S.Karigiannis, J.Lotay: arXiv:2002.06444
[FHN] L.Foscolo, M.Haskins, J.Nordstrom: arXiv: 1805.02612
[K] K.Kawai: in Comm. Anal. Geom. 2018
[B] O.Bogoyavlenskaya: in Sibirsk. Mat. Zh. 2013
[AS] V.Apostolov, S. Salamon: in Comm. Math. Phys. $20 \underline{04}$
[AyW] M.Atiyah, E. Witten: in Adv. Theor. Math. Phys. 2002
[AW] B.Acharya, E.Witten: arXiv:hep-th/0109152

If N^{6} is nearly Kähler then the cone $\mathbb{R}^{+} \times N$ has a Ricci-flat metric with holonomy in G_{2}. We shall take $N=\mathbb{C P}^{3}$ with its NK structure and non-integrable almost complex structure J_{2} arising from the fibration $\mathbb{C P}^{3} \rightarrow S^{4}$. Set $\mathscr{C}=\mathbb{R}^{+} \times \mathbb{C P}^{3}$. We shall

- construct the resulting G_{2} metric h on \mathscr{C} starting from $\mathbb{C}^{4}=\mathbb{R}^{8}$,
- investigate the geometry arising from an action of $\mathrm{SO}(2)$ rotating S^{4},
- explain that the quotient $\mathscr{C} / \mathrm{SO}(2)$ is essentially \mathbb{R}^{6},
- describe the induced $\mathrm{SU}(3)$ structure (σ, g, \mathbb{J}) on \mathbb{R}^{6} in the spirit of [AS].

The metric h can be smoothed into a complete asymptotically conical (AC) metric on the total space of $\Lambda_{-}^{2} T^{*} S^{4}[\mathrm{BS}]$. There are analogous AC metrics formed from the NK spaces $\mathrm{SU}(3) / T^{2}$ and $S^{3} \times S^{3}$, though the last one is the most amenable for study (next slides).

The AC metric on the spin bundle over S^{3} with isometry group $\mathrm{SU}(2)^{3}$ represents a bifurcation in a one-parameter family of G_{2} metrics with a cohomogeneous-one action by $\mathrm{SU}(2)^{2} \times \mathrm{U}(1)$, in two different ways giving a G_{2} flop [FHN].

The AC metric is a limit of asymptotically locally conical (ALC) metrics, each of which has a circle of fixed radius r at infinity. These ALC metrics first appeared in the physics literature $[B G G G, C G L P, \ldots]$ with the names \mathbb{B}_{7} and \mathbb{D}_{7} and the existence of one was proved by [B]. In the collapsed limit as $r \rightarrow 0$, one obtains an AC Calabi-Yau space.

Circle bundles over singular Calabi-Yau spaces can be used to construct G_{2} metrics [FHN^{\prime}]. There is an infinite family of complete $\mathrm{AC} \mathrm{G}_{2}$ metrics on circle bundles $M_{m, n} \rightarrow K_{\mathbb{C P}^{1} \times \mathbb{C P}^{1}}$ that are asymptotic to cones over finite quotients of $S^{3} \times S^{3}$.

G_{2} metrics of cohomogeneity one

...based on one-parameter families of half-flat $\mathrm{SU}(3)$ structures on $S^{3} \times S^{3}$ invariant by $\mathrm{SU}(2)^{2} \times \mathrm{U}(1):$

$$
S^{3} \times \Lambda_{-}^{2}
$$

collapsed
incomplete regime

$$
C\left(S^{3} \times S^{3}\right)
$$

$$
C\left(S^{2} \times S^{3}\right)
$$

Join the dots!

$$
S^{2} \times \mathbb{R}^{4}
$$

Motivation from String Theory

By analogy, the $\mathrm{SO}(5)$-invariant G_{2} metric on $\Lambda_{-}^{2} T^{*} S^{4}$ arises as a collapsed limit of metrics with holonomy $\operatorname{Spin}(7)$ on the spin bundle over S^{4}.
Dirac monopole: $U(1)$ acts on the left on \mathbb{H} with quotient $\mathbb{R}^{4} / \mathrm{U}(1) \cong \Lambda_{-}^{2}$
Let's return to $\mathscr{C}=\mathbb{R}^{+} \times \mathbb{C P}^{3}$ with its conical G_{2} metric h. There is no obvious way to associate ALC metrics to this set-up because of the absence of free circle and group actions. Nonetheless, there is an action of $\mathrm{SO}(2)$ on

$$
S^{4} \subset \mathbb{R}^{2} \oplus \mathbb{R}^{3}
$$

that lifts to $\mathbb{C P}^{3}$ and fixes two 2-spheres. Then $\mathscr{C} / \mathrm{SO}(2)$ has singular locus $\mathbb{R}^{3} \cup \mathbb{R}^{3}$ (minus the origin). M-theory formulated on \mathscr{C} is dual to Type IIA superstring theory on \mathbb{R}^{6}, and fixed points of $\mathrm{SO}(2)$ on \mathscr{C} are identified with D-branes of the quotient [AyW].

Group actions

Start with $\mathbb{H}^{2}=\mathbb{C}^{4}=\mathbb{R}^{8}$. Its QK structure corresponds to $\operatorname{Sp}(2)_{\ell} \times \operatorname{Sp}(1)_{r}$ modulo \mathbb{Z}_{2}. Consider the subgroups

$$
\mathrm{U}(1)_{\ell} \times \mathrm{SU}(2) \subset \mathrm{Sp}(2)_{\ell}, \quad \mathrm{Sp}(1)_{r} \supset \mathrm{U}(1)_{r}
$$

The 2-torus $\mathrm{U}(1)_{\ell} \times \mathrm{U}(1)_{r}$ acts on $\mathbb{H}^{2}=\mathbb{C}^{4}$ as

$$
\begin{aligned}
\left(q_{0}, q_{1}\right) & \mapsto e^{i \theta}\left(q_{0}, q_{2}\right) e^{i \phi} \\
\left(z_{0}, z_{1}, z_{2}, z_{3}\right) & \mapsto\left(e^{i(\theta+\phi)} z_{0}, e^{i(\theta-\phi)} \mathfrak{z}_{1}, e^{i(\theta+\phi)} z_{2}, e^{i(\theta-\phi)} z_{3}\right)
\end{aligned}
$$

It splits $\mathbb{R}^{8}=\mathbb{R}_{0145}^{4} \oplus \mathbb{R}_{2367}^{4}$ with a 'transposed' hyperkähler structure associated to

$$
\Lambda_{-}^{2}\left(\mathbb{R}_{0145}^{4}\right) \oplus \Lambda_{-}^{2}\left(\mathbb{R}_{2367}^{4}\right) \cong \mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \cong \mathbb{R}^{6}
$$

This space is T^{2} invariant, and is the target of an associated moment map.

Bivectors

Define $\mathbb{C P}^{3}=S^{7} / \mathrm{U}(1)_{r}$ and set $\mathscr{C}=\mathbb{R}^{+} \times \mathbb{C P}^{3}$. Then the moment map induces

$$
\begin{array}{cccc}
\mu: & \mathscr{C} & \longrightarrow & \mathbb{R}^{6} \\
& {\left[z_{0}, z_{1}, z_{2}, z_{3}\right]} & \longmapsto & (\mathbf{u}, \mathbf{v})
\end{array}
$$

whose fibres are orbits of $\mathrm{U}(1)_{\ell} / \mathbb{Z}_{2}=\mathrm{SO}(2)$ à la Gibbons-Hawking, and

$$
\begin{gathered}
\left\{\begin{array} { l }
{ u _ { 1 } = | z _ { 0 } | ^ { 2 } - | z _ { 2 } | ^ { 2 } } \\
{ u _ { 2 } = 2 \operatorname { R e } (z _ { 0 } \overline { z } _ { 2 }) } \\
{ u _ { 3 } = - 2 \operatorname { I m } (z _ { 0 } \overline { z } _ { 2 }) , }
\end{array} \quad \left\{\begin{array}{l}
v_{1}=\left|z_{1}\right|^{2}-\left|z_{3}\right|^{2} \\
v_{2}=2 \operatorname{Re}\left(z_{1} \bar{z}_{3}\right) \\
v_{3}=2 \operatorname{Im}\left(z_{1} \bar{z}_{3}\right) .
\end{array}\right.\right. \\
R=\sum_{i=0}^{3}\left|z_{i}\right|^{2} \text { equals } u+v, \text { where } u=|\mathbf{u}| \text { and } v=|\mathbf{v}| .
\end{gathered}
$$

The action of T^{2} on \mathbb{R}^{8} commutes with $\mathrm{SU}(2)$ that acts as $\mathrm{SO}(3)$ diagonally on \mathbb{R}^{6}.

Let $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ be a triple of 1-forms on \mathbb{R}^{8} trivializing the action of $\operatorname{Sp}(1)_{r}$, chosen so that α_{1}^{\sharp} generates $\mathrm{U}(1)_{r}$.

Proposition. The $\mathrm{G}_{2} 3$-form φ on \mathscr{C} equals $-d(R \tau)$, where

$$
\tau=d R \wedge \alpha_{1}-\alpha_{2} \wedge \alpha_{3}
$$

To smooth the vertex $(r=0)$ of the cone, replace the coefficient R of τ by $\left(R^{4}+1\right)^{1 / 4}$. The resulting complete AC metric is

$$
\left(R^{4}+1\right)^{-1 / 2} g_{\text {ver }}+\left(R^{4}+1\right)^{1 / 2} g_{\text {hor }} .
$$

It has convergence rate -4 (since R is Euclidean radius squared) and is rigid as an AC metric [KL^{\prime}].

We are now considering the quotient of the G_{2} manifold $\mathscr{C}=\mathbb{R}^{+} \times \mathbb{C P}^{3}$ by $\mathrm{SO}(2)$, which is $\mathbb{R}^{6} \backslash \mathbf{0}$. The $\mathrm{SO}(3)$ orbit of a bivector $(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^{6}$ has dimension 3 unless $\mathbf{u} \wedge \mathbf{v}=0$.

Definition. Set $\mathscr{F}_{ \pm}=\left\{(\mathbf{u}, \mathbf{v}) \in \mathbb{R}^{6}: v \mathbf{u}= \pm u \mathbf{v}\right\}$.
The equation $u v=0$ defines the singular locus $\mathbb{R}^{3} \cup \mathbb{R}^{3}$ of \mathbb{R}^{6} where the circle fibres of μ collapse. If $u v \neq 0$ then $(\mathbf{u}, \mathbf{v}) \in \mathscr{F}_{+}$(resp. \mathscr{F}_{-}) iff \mathbf{u}, \mathbf{v} are aligned (resp. anti-aligned).

We can interpret these sets in terms of the fibration $\mathbb{C P}^{3} \rightarrow S^{4}$ (next slide):
Theorem. $\mu^{-1}\left(\mathscr{F}_{ \pm}\right) / \mathbb{R}^{*}=Q_{ \pm} \subset \mathbb{C P}^{3}$ where
$Q_{+}=\left\{\left[z_{0}, z_{1}, z_{2}, z_{3}\right]: z_{0} \bar{z}_{3}-z_{1} \bar{z}_{2}=0\right\}$ consists of points where $\mathrm{U}(1)_{\ell}$ acts vertically,
$Q_{-}=\left\{\left[z_{0}, z_{1}, z_{2}, z_{3}\right]: z_{0} z_{1}+z_{2} z_{3}=0\right\}$ consists of points where $\mathrm{U}(1)_{\ell}$ acts horizontally.

Rather than using the Hopf map $\mathbb{C P}^{3} \rightarrow \mathbb{H P}^{1}$, one can pass directly to the 4 -sphere:

$$
\begin{array}{clll}
\mathbb{C}^{4} & & \mathbb{C P}^{3} \times \mathbb{R}^{+}=\mathscr{C} \\
\downarrow & & \pi \downarrow \\
\Lambda_{0}^{2}\left(\mathbb{C}^{4}\right) \\
& & &
\end{array}
$$

The action of $\mathrm{U}(1)_{\ell}$ on \mathbb{R}^{8} covers a rotation of S^{4} :

$$
\begin{array}{ccccc}
\mathrm{U}(1)_{\ell} & \subset & \mathrm{U}(2) & \subset & \mathrm{Sp}(2)_{\ell} \\
& & & & \downarrow \\
\mathrm{SO}(2) & \subset & \mathrm{SO}(2) \times \mathrm{SO}(3) & \subset & \mathrm{SO}(5) .
\end{array}
$$

Let $\mathbb{S}^{1}=S^{4} \cap \mathbb{R}^{2}$ denote the fixed point set for the action of $\operatorname{SO}(3)(s=0$ next $)$,
Let $\mathbb{S}^{2}=S^{4} \cap \mathbb{R}^{3}$ denote the fixed point set for the action of $\operatorname{SO}(2)$ ($s=1$ next).

The non-holomorphic quadric Q_{+}is simply $\pi^{-1}\left(\mathbb{S}^{2}\right) \cong S^{2} \times S^{2}$.
By contrast, Q_{-}contains $\pi^{-1}\left(\mathbb{S}^{1}\right)$, away from which it is a double covering of

$$
S^{4} \backslash \mathbb{S}^{1} \cong \mathbb{H} \backslash \mathbb{R} \cong S^{2} \times \mathcal{H}^{2}
$$

It encodes the conformally Kähler metric [Pont,SV] and the orthogonl complex structure on $\mathbb{H} \backslash \mathbb{R}$ that can be used to define quaternion power series [GSS].

If X is the Killing field generated by $\mathrm{SO}(2)$, then

$$
X^{b}=\left(1-s^{2}\right) d t
$$

where $t: S^{4} \backslash \mathbb{S}^{2} \rightarrow[0,2 \pi)$ and $s: S^{4} \rightarrow[0,1]$.

The 'dual pair' $\mathrm{SO}(2) \times \mathrm{SO}(3)$ (arising from $\left.\mathrm{U}(2) \subset \mathrm{Sp}(2)_{\ell}\right)$ acts on $\mathbb{C P}^{3}$ and \mathscr{C}. We have already parametrized the orbits of $\mathrm{SO}(2)$, and will deal with those of $\mathrm{SO}(3)$ shortly.

One could instead focus on

$$
\mathrm{U}(1) \times \mathrm{Sp}(1) \subset \mathrm{Sp}(2)_{\ell}
$$

that acts as $\mathrm{U}(2)$ on \mathbb{R}^{4} fixing two poles of S^{4}. Or work with arbitrary weights for the action of a circle subgroup of $U(2)$ on \mathbb{C}^{2}.

Backtracking, we could replace $\mathrm{U}(1)_{r}$ by $\mathrm{U}(1)$ with weights (p, q) on \mathbb{H}^{2} giving rise to weighted projective space $\mathbb{W} \mathbb{C} \mathbb{P}_{p, p, q, q}^{3}$ with a circle action again fixing two projective lines. This space is conjectured to carry a NK metric [AW].

Let G be a compact Lie group, for instance $\mathrm{SO}(5)$.
Key fact. Each conjugacy class of subalgebras $\mathfrak{s u}(2) \subset \mathfrak{g}$ gives rise to a complex nilpotent orbit $\mathscr{N} \subset \mathfrak{g}_{\mathbb{C}}$ with a HK metric [Kr], and a (typically incomplete) QK metric on the total space $M^{4 n}$ of a vector bundle over $L=G / N(\mathfrak{s u}(2))$ [Sw].

There are 3 such classes for $\mathfrak{s o}(5)$:

- the minimal $\mathfrak{s u}(2)$ with normalizer $\mathrm{SO}(4)$, so $L=M=S^{4}$ and $n=1$
- our $\mathfrak{s o}(3)=\mathfrak{s u}(2)$ with $L=S O(5) / S O(2) \times S O(3) \cong Q^{3}$ and $n=2$
- the principal $\mathfrak{s u}(2)$ with $L=S O(5) / S O(3)$ and $n=3$.

In the last case, C has a nearly-parallel G_{2} structure, so $\mathbb{R}^{+} \times C$ has holonomy $\operatorname{Spin}(7)$.

Coassociative submanifolds

Work inside the 7-manifold $\mathscr{C}=\mathbb{R}^{+} \times \mathbb{C P}^{3}$, with its 3-form φ defining the G_{2} metric h.
Let $i: \mathcal{U} \rightarrow \mathscr{C}$ be a 3 -dimensional orbit of some subgroup $\mathrm{SU}(2)$ or $\mathrm{SO}(3)$ of $\mathrm{SO}(5)$. Since the latter preserves $\varphi, i^{*} \varphi$ must be a constant multiple of the volume form on \mathcal{U}. But $\left[i^{*} \varphi\right]=i^{*}[-d(R \tau)]=0$, so $i^{*} \varphi \equiv 0$.

Lemma. A 4-dimensional submanifold \mathcal{V} of a G_{2} manifold is coassociative iff $i^{*} \varphi \equiv 0$.
We expect each orbit \mathcal{U} to be contained in a unique such a submanifold, $T_{x} \mathcal{U} \subset T_{x} \mathcal{V}$. In favourable circumstances, there will be a foliation of \mathscr{C} by coassociatives of codim one $[\mathrm{K}, \mathrm{KL}] .\left(\mathscr{C}\right.$ has a more elementary foliation by Eguchi-Hanson spaces $T^{*} S^{2}$, each with $\mathbf{u}-\mathbf{v}$ constant, but this is not really related to G_{2}.)

Invariants for our $\mathrm{SO}(3)$

For the diagonal action of $\mathrm{SO}(3)$ on \mathbb{R}^{6}, invariant functions are obviously u, v and $\mathbf{u} \cdot \mathbf{v}$. We can recover these on $\mathbb{C P}^{3}$ from the function $z_{0} \bar{z}_{3}-\bar{z}_{1} z_{2}=\sqrt{a / 2} e^{i t}$ defining Q_{+}:
Lemma. $2 a=u v-\mathbf{u} \cdot \mathbf{v}=R^{2}\left(1-s^{2}\right)$, so $R=\sqrt{\frac{2 a}{1-s^{2}}}$.
An $\mathrm{SO}(3)$ orbit \mathcal{U} will intersect a twistor fibre S^{2} of radius R over $p \in S^{4} \backslash \mathbb{S}^{1}$ in a circle at 'height' $h=(u-v) /(R s) \in[-1,1]$ relative to poles defined by Q_{-}.

Define $b=u^{2}-v^{2}=R H s$, so

$$
h=\left(b / a^{2}\right) \frac{1-s^{2}}{s}
$$

Theorem [ABS]. Setting a, b, t constant defines a coassociative submanifold of \mathscr{C} diffeomorphic to $T^{*} S^{2}$ unless $a=b=0$.

This is induced from the G_{2} structure on \mathscr{C}. Let X be the Killing vector field generating the $\mathrm{SO}(2)$ fibres of $\mu: \mathscr{C} \rightarrow \mathbb{R}^{6}$. Then

$$
\sigma=X\lrcorner \varphi=-X\lrcorner d(R \tau)=d(R X\lrcorner \tau)
$$

Set $\mathbf{p}=\mathbf{u}+\mathbf{v}$ and $\mathbf{q}=R(\mathbf{u}-\mathbf{v})$, where $R=u+v=|\mathbf{u}|+|\mathbf{v}|$.
Unexplained theorem [ABS]. The components of \mathbf{p}, \mathbf{q} are Darboux coordinates:

$$
\sigma=-\frac{1}{2} \sum_{i=1}^{3} d p_{i} \wedge d q_{i}
$$

Note that σ extends to $\mathbb{R}^{3} \cup \mathbb{R}^{3}$ and is non-degenerate on $\mathbb{R}^{6} \backslash \mathbf{0}$. The projections $(\mathbf{u}, \mathbf{v}) \mapsto R^{1 / 2} \mathbf{u}$ and $(\mathbf{u}, \mathbf{v}) \mapsto R^{1 / 2} \mathbf{v}$ also have Lagrangian fibres.

Induced metric g

Recall that h is the conical metric on \mathscr{C} with holonomy G_{2}. We seek the metric g induced on $\mathbb{R}^{6} \backslash\left(\mathbb{R}^{3} \cup \mathbb{R}^{3}\right)$ by setting

$$
h=\mu^{*} g+\frac{1}{4} N \Theta^{2}
$$

where $\Theta=2(X\lrcorner h) / N$ is the connection 1-form, and $N=h(X, X)=6 u v-2 \mathbf{u} \cdot \mathbf{v}$ measures the size of the circle fibres. This makes μ a Riemannian submersion.

Computational theorem [ABS].

$$
g=\frac{1}{2} d R^{2}+\frac{1}{2}|d \mathbf{u}+d \mathbf{v}|^{2}+\frac{2}{N}|u d \mathbf{v}-v d \mathbf{u}|^{2}+\frac{1}{2 N} \Gamma_{+}^{2}-\frac{1}{4 N} \Gamma_{-}^{2},
$$

where the 1 -forms

$$
\begin{aligned}
& \Gamma_{+}=\mathbf{u} \cdot d \mathbf{v}+\mathbf{v} \cdot d \mathbf{u}-u d v-v d u \\
& \Gamma_{-}=\mathbf{u} \cdot d \mathbf{v}-\mathbf{v} \cdot d \mathbf{u}+u d v-v d u .
\end{aligned}
$$

vanishes on $\mathscr{F}_{+}, \mathscr{F}_{-}$respectively.

Non-degeneracy

We can recover the conical nature of g by the change of variables

$$
u=R \cos ^{2}(\phi / 2), \quad v=R \sin ^{2}(\phi / 2)
$$

Then $\mathscr{F}_{ \pm} \cong \mathbb{R}^{+} \times[0, \pi] \times S^{2}$, with coordinates R, ϕ, σ.
Corollary 1. The restriction of g to $\mathscr{F}_{ \pm}$equals $d R^{2}+R^{2} \widehat{g}$ where

$$
\widehat{g}= \begin{cases}\frac{1}{2}|d \boldsymbol{\sigma}|^{2}+\frac{1}{4} d \phi^{2} & \text { on } \mathscr{F}_{+} \\ \frac{1}{8}(3+\cos 2 \phi)|d \boldsymbol{\sigma}|^{2}+\frac{1}{2} d \phi^{2} & \text { on } \mathscr{F}_{-} .\end{cases}
$$

Corollary 2. Relative to g, vectors in the respective singular \mathbb{R}^{3} axes meet at an angle of

$$
\frac{1}{2} \pi \leqslant \pi \sqrt{\frac{3}{8}-\frac{1}{8} \cos \theta} \leqslant \frac{1}{\sqrt{2}} \pi \sim 127^{\circ}
$$

Almost complex structure \mathbb{J}

This is determined by g and the closed 3-form $\left.\psi^{+}=X\right\lrcorner(* \varphi)$.

$$
\begin{aligned}
& \text { Proposition. } \quad 8 u v \psi^{+}=\frac{1}{3} v\left(2 v^{2}+3 u v-\mathbf{u} \cdot \mathbf{v}\right)\{d \mathbf{u}, d \mathbf{u}, d \mathbf{u}\} \\
& -v\left(4 u^{2}+3 u v+\mathbf{u} \cdot \mathbf{v}\right)\{d \mathbf{v}, d \mathbf{u}, d \mathbf{u}\}+((u+2 v) \mathbf{v} \cdot d \mathbf{v}+v \mathbf{u} \cdot d \mathbf{v}) \wedge\{\mathbf{u}, d \mathbf{u}, d \mathbf{u}\} \\
& +(v \mathbf{u} \cdot d \mathbf{v}-u \mathbf{v} \cdot d \mathbf{v}) \wedge\{\mathbf{v}, d \mathbf{u}, d \mathbf{u}\}+\text { terms interchanging } \mathbf{u} \text { and } \mathbf{v} .
\end{aligned}
$$

Let $\mathbf{n} \in S^{2}$ and set $\mathscr{M}_{\mathbf{n}}=\{(\mathbf{u}, \mathbf{v}): \mathbf{u} \cdot \mathbf{n}=0=\mathbf{v} \cdot \mathbf{n}, u v \neq 0\}$, essentially an \mathbb{R}^{4}.
Note that $\mathscr{M}_{\mathbf{n}}=\mathscr{M}_{\mathbf{n}^{\prime}}$ iff $\mathbf{n}= \pm \mathbf{n}^{\prime}$, otherwise the intersection is 2-dimensional.
Corollary 3. \mathscr{M}_{n} is a non-integrable \mathbb{J}-holomorphic subvariety of \mathbb{R}^{6}.
An open subset of \mathbb{R}^{6} is exhausted by a family of \mathbb{J}-holomorphic surfaces parametrized by $\mathbb{R P}^{2}$. The intersection of any two is a 'superminimal' \mathbb{J}-holomorphic curve.

Upcoming talks

- S.-T. Yau, Simons Foundation lecture, tonight!
- T. Madsen, Multisymplectic Geometry Leuven, in 24 hours.
- K. Dixon, SCSHGAP workshop, in 7 days.

With admiration

