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Topics to interest Dmitri 1/20

…contained in this talk include

– Riemannian holonomy groups

– Einstein metrics

– Homogeneous spaces

– Quaternionic geometry

– Twistor spaces
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Today’s talk 3/20

If N6 is nearly Kähler then the cone R+ ×N has a Ricci-flat metric with holonomy in G2 .

We shall take N = CP3 with its NK structure and non-integrable almost complex
structure J2 arising from the fibration CP3 → S4 . Set C = R+ × CP3 . We shall

– construct the resulting G2 metric h on C starting from C4 = R8 ,

– investigate the geometry arising from an action of SO(2) rotating S4 ,

– explain that the quotient C /SO(2) is essentially R6 ,

– describe the induced SU(3) structure (σ, g, J) on R6 in the spirit of [AS].

The metric h can be smoothed into a complete asymptotically conical (AC) metric on the
total space of Λ2

−T
∗S4 [BS]. There are analogous AC metrics formed from the NK spaces

SU(3)/T2 and S3×S3, though the last one is the most amenable for study (next slides).
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Motivation from ALC families 4/20

The AC metric on the spin bundle over S3 with isometry group SU(2)3 represents a
bifurcation in a one-parameter family of G2 metrics with a cohomogeneous-one action by
SU(2)2×U(1), in two different ways giving a G2 flop [FHN].

The AC metric is a limit of asymptotically locally conical (ALC) metrics, each of which
has a circle of fixed radius r at infinity. These ALC metrics first appeared in the physics
literature [BGGG,CGLP,…] with the names B7 and D7 and the existence of one was
proved by [B]. In the collapsed limit as r → 0, one obtains an AC Calabi-Yau space.

Circle bundles over singular Calabi-Yau spaces can be used to construct G2 metrics
[FHN′]. There is an infinite family of complete AC G2 metrics on circle bundles
Mm,n → KCP1×CP1 that are asymptotic to cones over finite quotients of S3×S3 .
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G2 metrics of cohomogeneity one 5/20

…based on one-parameter families of half-flat SU(3) structures on S3×S3 invariant by
SU(2)2×U(1):

S3×Λ2
−• collapsed

incomplete regime • •
C(S3×S3) C(S2×S3)

•
Join the dots! S2×R4
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Motivation from String Theory 6/20

By analogy, the SO(5)-invariant G2 metric on Λ2
−T

∗S4 arises as a collapsed limit of
metrics with holonomy Spin(7) on the spin bundle over S4 .

Dirac monopole: U(1) acts on the left on H with quotient R4/U(1) ∼= Λ2
−

Let’s return to C = R+×CP3 with its conical G2 metric h. There is no obvious way to
associate ALC metrics to this set-up because of the absence of free circle and group
actions. Nonetheless, there is an action of SO(2) on

S4 ⊂ R2 ⊕ R3

that lifts to CP3 and fixes two 2-spheres. Then C /SO(2) has singular locus R3 ∪ R3

(minus the origin). M-theory formulated on C is dual to Type IIA superstring theory on
R6 , and fixed points of SO(2) on C are identified with D-branes of the quotient [AyW].
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Group actions 7/20

Start with H2 = C4 = R8 . Its QK structure corresponds to Sp(2)ℓ × Sp(1)r modulo Z2 .
Consider the subgroups

U(1)ℓ × SU(2) ⊂ Sp(2)ℓ, Sp(1)r ⊃ U(1)r.

The 2-torus U(1)ℓ ×U(1)r acts on H2 = C4 as

(q0, q1) 7→ eiθ(q0, q2)eiϕ

(z0, z1, z2, z3) 7→ (ei(θ+ϕ)z0, e
i(θ−ϕ)z1, e

i(θ+ϕ)z2, e
i(θ−ϕ)z3).

It splits R8 = R4
0145 ⊕ R4

2367 with a ‘transposed’ hyperkähler structure associated to

Λ2
−(R4

0145)⊕ Λ2
−(R4

2367)
∼= su(2)⊕ su(2) ∼= R6.

This space is T2 invariant, and is the target of an associated moment map.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bivectors 8/20

Define CP3 = S7/U(1)r and set C = R+×CP3 . Then the moment map induces

µ : C −→ R6

[z0, z1, z2, z3] 7−→ (u, v),

whose fibres are orbits of U(1)ℓ/Z2 = SO(2) à la Gibbons-Hawking, and
u1 = |z0|2 − |z2|2

u2 = 2Re(z0z2)

u3 = −2Im(z0z2),


v1 = |z1|2 − |z3|2

v2 = 2Re(z1z3)

v3 = 2Im(z1z3).

R =
3∑

i=0

|zi|2 equals u+ v, where u = |u| and v = |v|.

The action of T2 on R8 commutes with SU(2) that acts as SO(3) diagonally on R6 .
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G2 holonomy 9/20

Let {α1, α2, α3} be a triple of 1-forms on R8 trivializing the action of Sp(1)r , chosen so
that α♯

1 generates U(1)r .

Proposition. The G2 3-form φ on C equals −d
(
Rτ

)
, where

τ = dR ∧ α1 − α2 ∧ α3.

To smooth the vertex (r = 0) of the cone, replace the coefficient R of τ by (R4 + 1)1/4 .
The resulting complete AC metric is

(R4 + 1)−1/2gver + (R4 + 1)1/2ghor.

It has convergence rate −4 (since R is Euclidean radius squared) and is rigid as an AC
metric [KL′].
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Parallel 3-vectors 10/20

We are now considering the quotient of the G2 manifold C = R+×CP3 by SO(2),
which is R6 \ 0. The SO(3) orbit of a bivector (u, v) ∈ R6 has dimension 3 unless
u ∧ v = 0.

Definition. Set F± = {(u, v) ∈ R6 : vu = ±uv}.

The equation uv = 0 defines the singular locus R3 ∪R3 of R6 where the circle fibres of µ
collapse. If uv ̸= 0 then (u, v) ∈ F+ (resp. F−) iff u, v are aligned (resp. anti-aligned).

We can interpret these sets in terms of the fibration CP3 → S4 (next slide):

Theorem. µ−1(F±)/R∗ = Q± ⊂ CP3 where

Q+ = {[z0, z1, z2, z3] : z0z3 − z1z2 = 0} consists of points where U(1)ℓ acts vertically,

Q− = {[z0, z1, z2, z3] : z0z1 + z2z3 = 0} consists of points where U(1)ℓ acts horizontally.
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The twistor fibration 11/20

Rather than using the Hopf map CP3 → HP1, one can pass directly to the 4-sphere:

C4y
Λ2
0(C4)

CP3×R+ = C

π
y

∼= R5 ⊃ S4

The action of U(1)ℓ on R8 covers a rotation of S4 :

U(1)ℓ ⊂ U(2) ⊂ Sp(2)ℓ
↓

SO(2) ⊂ SO(2)× SO(3) ⊂ SO(5).

Let S1 = S4 ∩ R2 denote the fixed point set for the action of SO(3) (s = 0 next),

Let S2 = S4 ∩ R3 denote the fixed point set for the action of SO(2) (s = 1 next).
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The two quadrics 12/20

The non-holomorphic quadric Q+ is simply π−1(S2) ∼= S2×S2 .

By contrast, Q− contains π−1(S1), away from which it is a double covering of

S4 \ S1 ∼= H \ R ∼= S2 ×H2.

It encodes the conformally Kähler metric [Pont,SV] and the orthogonl complex structure
on H \ R that can be used to define quaternion power series [GSS].

If X is the Killing field generated by SO(2), then

X ♭ = (1− s2)dt,

where t : S4 \ S2 → [0, 2π) and s : S4 → [0, 1].
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Circle actions (in general) 13/20

The ‘dual pair’ SO(2)× SO(3) (arising from U(2) ⊂ Sp(2)ℓ) acts on CP3 and C . We
have already parametrized the orbits of SO(2), and will deal with those of SO(3) shortly.

One could instead focus on
U(1)× Sp(1) ⊂ Sp(2)ℓ

that acts as U(2) on R4 fixing two poles of S4 . Or work with arbitrary weights for the
action of a circle subgroup of U(2) on C2 .

Backtracking, we could replace U(1)r by U(1) with weights (p, q) on H2 giving rise to
weighted projective space WCP3

p,p,q,q with a circle action again fixing two projective lines.
This space is conjectured to carry a NK metric [AW].



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3-dimensional orbits 14/20

Let G be a compact Lie group, for instance SO(5).

Key fact. Each conjugacy class of subalgebras su(2) ⊂ g gives rise to a complex nilpotent
orbit N ⊂ gC with a HK metric [Kr], and a (typically incomplete) QK metric on the
total space M4n of a vector bundle over L = G/N(su(2)) [Sw].

There are 3 such classes for so(5):

– the minimal su(2) with normalizer SO(4), so L = M = S4 and n = 1

– our so(3) = su(2) with L = SO(5)/SO(2)×SO(3) ∼= Q3 and n = 2

– the principal su(2) with L = SO(5)/SO(3) and n = 3.

In the last case, C has a nearly-parallel G2 structure, so R+×C has holonomy Spin(7).
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Coassociative submanifolds 15/20

Work inside the 7-manifold C = R+×CP3 , with its 3-form φ defining the G2 metric h.

Let i : U → C be a 3-dimensional orbit of some subgroup SU(2) or SO(3) of SO(5).
Since the latter preserves φ, i∗φ must be a constant multiple of the volume form on U .
But [i∗φ] = i∗[−d(Rτ)] = 0, so i∗φ ≡ 0.

Lemma. A 4-dimensional submanifold V of a G2 manifold is coassociative iff i∗φ ≡ 0.

We expect each orbit U to be contained in a unique such a submanifold, TxU ⊂ TxV .
In favourable circumstances, there will be a foliation of C by coassociatives of codim one
[K,KL]. (C has a more elementary foliation by Eguchi-Hanson spaces T∗S2 , each with
u− v constant, but this is not really related to G2 .)
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Invariants for our SO(3) 16/20

For the diagonal action of SO(3) on R6, invariant functions are obviously u, v and u ·v.
We can recover these on CP3 from the function z0z3 − z1z2 =

√
a/2eit defining Q+ :

Lemma. 2a = uv− u ·v = R2(1− s2), so R=

√
2a

1− s2
.

An SO(3) orbit U will intersect a twistor fibre S2 of radius R over p ∈ S4 \ S1 in a circle
at ‘height’ h = (u− v)/(Rs) ∈ [−1, 1] relative to poles defined by Q− .

Define b = u2 − v2 = RHs, so

h = (b/a2)
1− s2

s
.

Theorem [ABS]. Setting a, b, t con-
stant defines a coassociative submani-
fold of C diffeomorphic to T∗S2 unless
a = b = 0.
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Symplectic form σ 17/20

This is induced from the G2 structure on C . Let X be the Killing vector field generating
the SO(2) fibres of µ : C → R6 . Then

σ = X⌟ φ = −X⌟ d(Rτ) = d(RX⌟ τ).

Set p = u+v and q = R(u−v), where R = u+ v = |u|+ |v|.

Unexplained theorem [ABS]. The components of p, q are Darboux coordinates:

σ = −1
2

3∑
i=1

dpi ∧ dqi.

Note that σ extends to R3 ∪ R3 and is non-degenerate on R6 \ 0. The projections
(u, v) 7→ R1/2u and (u, v) 7→ R1/2v also have Lagrangian fibres.
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Induced metric g 18/20

Recall that h is the conical metric on C with holonomy G2 . We seek the metric g
induced on R6 \ (R3 ∪ R3) by setting

h = µ∗g+ 1
4NΘ2,

where Θ = 2(X⌟ h)/N is the connection 1-form, and N = h(X,X) = 6uv− 2u ·v
measures the size of the circle fibres. This makes µ a Riemannian submersion.

Computational theorem [ABS].

g = 1
2dR

2 + 1
2

∣∣du+ dv
∣∣2 + 2

N

∣∣udv− vdu
∣∣2 + 1

2NΓ
2
+ − 1

4NΓ
2
−,

where the 1-forms
Γ+ = u ·dv+ v ·du− udv− vdu,

Γ− = u ·dv− v ·du+ udv− vdu.

vanishes on F+, F− respectively.
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Non-degeneracy 19/20

We can recover the conical nature of g by the change of variables

u = R cos2(ϕ/2), v = R sin2(ϕ/2).

Then F± ∼= R+ × [0, π]× S2 , with coordinates R, ϕ, σ .

Corollary 1. The restriction of g to F± equals dR2 + R2ĝ where

ĝ =

{
1
2 |dσ|

2 + 1
4dϕ

2 on F+

1
8(3 + cos 2ϕ)|dσ|2 + 1

2dϕ
2 on F−.

Corollary 2. Relative to g, vectors in the respective singular R3 axes meet at an angle of

1
2π ⩽ π

√
3
8 − 1

8 cos θ ⩽
1√
2
π ∼ 127o.
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Almost complex structure J 20/20

This is determined by g and the closed 3-form ψ+ = X⌟ (∗φ).

Proposition. 8uvψ+ = 1
3v(2v

2 + 3uv− u ·v){du, du, du}
−v(4u2 + 3uv+ u ·v){dv, du, du}+

(
(u+ 2v)v ·dv+ vu ·dv

)
∧ {u, du, du}

+(vu ·dv− uv ·dv) ∧ {v, du, du}+ terms interchanging u and v.

Let n ∈ S2 and set Mn = {(u, v) : u ·n = 0 = v ·n, uv ̸= 0}, essentially an R4 .

Note that Mn = Mn′ iff n = ±n′ , otherwise the intersection is 2-dimensional.

Corollary 3. Mn is a non-integrable J-holomorphic subvariety of R6 .

An open subset of R6 is exhausted by a family of J-holomorphic surfaces parametrized by
RP2 . The intersection of any two is a ‘superminimal’ J-holomorphic curve.
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Upcoming talks 21/20

– S.-T. Yau, Simons Foundation lecture, tonight!

– T. Madsen, Multisymplectic Geometry Leuven, in 24 hours.

– K. Dixon, SCSHGAP workshop, in 7 days.
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With admiration 22/20


