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Figure: Alesund, Norway, June 2019.
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Some old open questions

• Is the bi-invariant metric on SU(3) isolated among Einstein
left-invariant metrics?

• Does SU(3) admit a third Einstein left-invariant metric? Are there only
finitely many up to isometry and scaling?

• Same questions for most compact homogeneous spaces.

• Does SL2(C) admit an Einstein left-invariant metric?

• Same question for any non-compact simple Lie group other than
SL2(R). Expected answer is NO, according to the Alekseevsky
Conjecture (i.e., Einstein solvmanifolds exhausts the possibilities for
Einstein homogeneous of negative scalar curvature).
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Setting
M homogeneous manifold,

G connected unimodular Lie group acting transitively on M,

MG set of G -invariant metrics on M = G/K , K isotropy at o ∈ M,
almost-effective,

MG is an open cone of the finite-dimensional vector space S2(M)G of
G -invariant symmetric 2-forms,

1 ≤ dimMG ≤ n(n+1)
2 .

The manifold MG can be naturally endowed with a Riemannian metric:

〈T ,T 〉g :=
∑

T (Xi ,Xi )
2,

where {Xi} is any go-orthonormal basis of ToM. Consider,

Rc :MG → S2(M)G , Sc :MG → R.
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Variational approach to Einstein metrics

It is well known ([Wang-Ziller, Nikonorov, Heber]) that

Sc :MG → R, grad(Sc)g = −Rc(g), ∀g ∈MG .

If MG
1 := {g ∈MG : detg g = 1}, then TgMG

1 = (Rg)⊥g .

Lemma ( [Palais 70] )

g ∈MG
1 is a critical point of Sc |MG

1
if and only if g is Einstein (i.e.,

Rc(g) = ρg , ρ ∈ R).

On the other hand, the Einstein operator (or traceless Ricci tensor) is
defined by

E :MG −→ S2(M)G , E(g) := Rc(g)− Sc(g)
n g ,

so g is Einstein if and only if E(g) = 0.
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Stability and non-deformability towards rigidity

Aut(G/K ) 	MG giving rise to equivariant isometry classes.

TgMG = S2(M)G = (Rg ⊕ Tg Aut(G/K ) · g)⊕⊥g Wg .

Definition

An Einstein metric g ∈MG is said to be,

• stable: Sc′′g |Wg×Wg < 0, where Sc′′g (T ,T ) := d2

dt2

∣∣∣
0

Sc(g + tT ).

• unstable: Sc′′g (T ,T ) > 0 for some T ∈ S2(M)G .

• infinitesimally deformable: Ker d E |g ∩Wg 6= 0 (E(g) = Rc(g)− Sc(g)
n

g).

• infinitesimally non-deformable: Ker d E |g ∩Wg = 0

• rigid: ∃ open neighborhood U of g in MG s.t. any other Einstein
g ′ ∈ U belongs to R+ Aut(G/K ) · g (⇒ isolated if Aut(G/K) ⊂ Iso(M, g)).

[Koiso 80] stable ⇒ infinitesimally non-deformable ⇒ rigid.
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Rc :MG → S2(M)G , d Rc |g : S2(M)G → S2(M)G .

Lemma ([E. Lauret-L. 20])

For any Einstein g ∈MG , say Rc(g) = ρg ,

• Sc′′g (T ,T ) = 4〈(ρ id−d Rc |g )T ,T 〉g , for any T ∈ S2(M)G .

• d E |g = d Rc |g − ρ id on (Rg)⊥g .

Corollary

An Einstein g ∈MG , say Rc(g) = ρg , is

• stable if and only if Spec
(
d Rc |g |Wg

)
> ρ;

• unstable if and only if d Rc |g |Wg has an eigenvalue < ρ;

• infinitesimally non-deformable if and only if ρ /∈ Spec
(
d Rc |g |Wg

)
;

• infinitesimally deformable if and only if ρ ∈ Spec
(
d Rc |g |Wg

)
.
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Prescribed Ricci problem [Besse, Chapter 5]. Given T ∈ S2(M)G ,
existence and uniqueness of g ∈MG and a constant c > 0 such that

(PRP) Rc(g) = cT

• Existence in (PRP) ⇔ image of Rc :MG −→ S2(M)G up to scaling.

• dim Ker d Rc |g is relevant (always Rg ⊂ Ker d Rc |g ).

• If M = G1/K1 ×G2/K2, G = G1 ×G2 and g = g1 + g2 ∈MG , where gi
is a Gi -invariant metric on Mi = Gi/Ki , then c1g1 + c2g2 ∈MG and

Rc(c1g1 + c2g2) = Rc(g1) + Rc(g2) = Rc(g), ∀c1, c2 > 0,

giving rise to a non-uniqueness situation.

• dim Ker d Rc |g ≥ 2 for any product metric g = g1 + g2 as above.

• If the isotropy representation of G1/K1 does not contain any trivial
subrepresentation, then any g ∈MG is a product metric.

J. Lauret Homogeneous Ricci 80th birthday of Dmitri 8 / 26



Some known results
Sufficient and/or necessary conditions for the solvability of Rc(g) = cT on
large classes of homogeneous spaces. Mostly for T ≥ 0, uniqueness always
holds.

• [Pulemotov 16, 18; Gould-Pulemotov 17] Generalized Wallach spaces,
generalized flag manifolds and two irreducible isotropy summands.

• [Buttsworth-Pulemotov-Rubinstein-Ziller 18] Spheres and projective
spaces. Ricci iteration.

• [Buttsworth 19] Unimodular 3-dimensional Lie groups. Non-uniqueness
of g and c occurs.

• [Arroyo-Pulemotov-Ziller 20] D’Atri-Ziller metrics on compact simple Lie
groups (i.e., K -invariant metrics on a compact simple Lie group H,
K ⊂ H, naturally reductive).

• [Arroyo-Gould-Pulemotov 20] K -invariant metrics on a non-compact
simple Lie group H, K ⊂ H maximal compact subgroup (naturally
reductive). Non-uniqueness of c .

J. Lauret Homogeneous Ricci 80th birthday of Dmitri 9 / 26



(PRP) Rc(g) = cT

• Given T , what kind of set is

{c > 0 : there exists solution g to (PRP)} =??

Is it bounded below? Is it finite?

• [DeTurck-Koiso 84] If M compact, T > 0 and Sec(T ) < 1
n−1 , then

there is no g such that Rc(g) = T .

• Existence of solution ⇔ T ∈ R+ Rc(MG ) ⇔ image of

R̃c :MG −→ S2(M)G , R̃c(g) := (detg0 g) Rc(g).

In particular, R̃c(ag) = anR̃c(g) for any a > 0.

• Injectivity of R̃c ⇔ uniqueness of solutions (i.e., (g1, c1) and (g2, c2) are
solutions iff g2 ∈ R+g1 and c2 = c1).
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Definition

A metric g ∈MG is said to be Ricci locally invertible if there exist open
neighborhoods U and V of g and Rc(g) in MG and S2(M)G , respectively,
satisfying the following properties:

(a) Rc(U) is a submanifold of codimension one in V and
Rc : U1 → Rc(U) = Rc(U1) is a diffeomorphism, where
U1 := {g ∈ U : detg0 g = detg0 g};

(b) for any T ∈ V , there exists a unique constant c > 0 such that
Rc(g) = cT for some g ∈ U;

(c) g is the unique metric up to scaling in U such that Rc(g) = cT .

• In other words, the function Rc is, locally, as surjective and injective as
it can be.

• There may exist another constant c ′ > 0 such that Rc(g ′) = c ′T for
some g ′ /∈ U.
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Ricci local invertibility

The following metrics are known to be Ricci locally invertible:

• [Hamilton 84] The round metric on the n-sphere Sn.

• [DeTurck 85] Irreducible symmetric spaces of compact type (Einstein
metrics with Ker ∆L = Rg (e.g., irreducible and Sec ≥ 0)).

• [Delay 99, Delay-Herzlich 01] Real and complex hyperbolic spaces.
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Ricci local invertibility

Definition

A metric g ∈MG is said to be Ricci locally invertible if:

(a) Rc : U1 → Rc(U1) is a diffeomorphism;

(b) ∀T ∈ V ∃ unique c > 0 s.t. Rc(g) = cT , g ∈ U;

(c) g unique metric up to scaling in U s.t. Rc(g) = cT .

• The subset

MG
inv :=

{
g ∈MG : g is Ricci locally invertible

}
is open in MG and Rc(MG

inv ) is open in Rc(MG ). Are they dense?

• The concept of Ricci local invertibility is geometric, in the sense that
g ∈MG

inv if and only if any f ∗g ∈MG
inv for any f ∈ Aut(G/K ).

• d Rc |g : (Rg)⊥g −→ (Rg)⊥g is an isomorphism for any g ∈ U1.
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Figure: Berger spheres. M = S3, G = SU(2)× S1, gb := (1, b, b) ∈MG , b > 0.
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Figure: R̃c = R+ Rc(MG ) (i.e., solvable T ’s)
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g Ricci locally invertible: the function Rc is, locally, as surjective and
injective as it can be.

Theorem ( [L.-Will 20] )

The following conditions are equivalent for a metric g ∈MG :

(i) R̃c is a local diffeomorphism at g .

(ii) Ker d Rc |g = Rg and Sc(g) 6= 0.

In that case, g is Ricci locally invertible.

Corollary ( [L.-Will 20] )

The subset MG
inv is either empty or open and dense in MG (in particular,

Rc(MG
inv ) is either empty or open and dense in Rc(MG )).

• What is most likely? (recall the product case M = G1/K1 × G2/K2).

• For G compact, R̃c :MG → S2(M)G is never a local diffeomorphism.
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Moving bracket approach to compute d Rc |g TIME!!

M = G/K , reductive decomposition g = k⊕ p, ToM ≡ p,

S2(M)G ↔ sym2(p)K , MG ↔ sym2
+(p)K .

Fix g ∈MG , 〈·, ·〉 := go , µ Lie bracket of g, µp : p× p→ p.

The Ricci operator of g is given by

Ricµ = Mµp −1
2 Bµ,

where 〈Bµ ·, ·〉 := Bµ |p×p Killing form, and M is the moment map for the
representation θ : gl(p)→ End(Λ2p∗ ⊗ p),

θ(A)λ := Aλ(·, ·)− λ(A·, ·)− λ(·,A·),

i.e., 〈Mµp ,A〉 := 1
4〈θ(A)µp, µp〉, ∀A ∈ gl(p) (GIT ).

The scalar curvature of g is Scµ = −1
4 |µp|

2 − 1
2 tr Bµ.
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Consider the maps

δµp : gl(p) −→ Λ2p∗ ⊗ p, δtµp
: Λ2p∗ ⊗ p −→ gl(p),

where δµp(A) := −θ(A)µp and δtµp
is the transpose of δµp , and

the operator Cµp : sym(p) −→ sym(p),

Cµp(A) := S ◦ δtµp
δµp(A) + 2AMµp +2 Mµp A.

• Cµp(I ) = 0 (〈Mµp ,A〉 = 1
4〈θ(A)µp, µp〉 = −1

4〈A, δ
t
µp

(µp)〉).

• Cµp(sym(p)) ⊥ RI .
• Cµp is a self-adjoint operator.

• 〈Cµp(A),A〉 = |θ(A)µp|2 + 〈θ(A2)µp, µp〉 for any A ∈ sym(p).

• Cµp

(
sym(p)K

)
⊂ sym(p)K .

• Relation with Chevalley cohomology (K trivial, so p = g),

g −−→
adµ

gl(g) −→
δµ

Λ2g∗ ⊗ g, ∆µ := adµ adt
µ +δtµδµ, Ker ∆µ = H1(g, g).
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First variation of Ricci and the Lichnerowicz Laplacian

Recall Cµp(A) := S ◦ δtµp
δµp(A) + 2AMµp +2 Mµp A.

Lemma ( [L.-Will, 20] )

For any T = 〈A·, ·〉 ∈ sym2(p)K , A ∈ sym(p)K ,

d Rc |gT = 1
4〈Cµp(A)·, ·〉.

[Changliang Wang-McKenzie Wang 18] S2(M)G ⊂ Ker δg for G compact,
which implies that d Rc |g = 1

2∆L on the subspace S2(M)G , where ∆L is
the Lichnerowicz Laplacian of g .

Corollary ( [L.-Will, 20] )

If G compact, then

∆LT = 2d Rc |gT = 1
2〈Cµp(A)·, ·〉.
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First variation of Ricci and the Lichnerowicz Laplacian

Recall Cµp(A) := S ◦ δtµp
δµp(A) + 2AMµp +2 Mµp A.

Lemma ( [L.-Will, 20] )

For any T = 〈A·, ·〉 ∈ sym2(p)K , A ∈ sym(p)K ,

d Rc |gT = 1
4〈Cµp(A)·, ·〉.

• d Rc |g (S2(M)G ) ⊥g Rg .

• d Rc |g is a self-adjoint operator.

• If g Einstein, say Rc(g) = ρg , then d Rc |g = 2ρ id restricted to
Tg Aut(G/K ) · g , recall

TgMG = S2(M)G = (Rg ⊕ Tg Aut(G/K ) · g)⊕⊥g Wg .
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Naturally reductive case

g ∈MG naturally reductive with respect to G and g = k⊕ p, i.e.,
adp X : p→ p skew-symmetric ∀X ∈ p, where adp X : p→ p,
Y 7→ µp(X ,Y ) (⇔ exp tX · o is a geodesic). Then,

Mµp = 1
4

∑
(adp Xi )

2,

where {Xi} is any orthonormal basis of (p, 〈·, ·〉).

Remark. For G compact semisimple, K trivial (p = g) and 〈·, ·〉 = −Bµ,
Mµ = −1

4 Casimir operator acting on the adjoint representation of g.

Cµp(A) := −
∑

[adp Xi , [adp Xi ,A]].

Note that Cµp ≥ 0 and Cµp(A) = 0 if and only if [A, adp p] = 0.

Remark. Cµ = Casimir operator acting on the representation sym(g) of g
given by τ(X )A := [adX ,A], i.e., Cµ = −

∑
τ(Xi )

2.
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Naturally reductive case

Theorem ( [L.-Will, 20] )

Let g ∈MG be a de Rham irreducible metric. If g is naturally reductive
with respect to G and Sc(g) 6= 0, then g is Ricci locally invertible.

Proof.

We use that if g is irreducible, then there exists no nontrivial subspace
invariant under the space of operators ad k|p + adp p (Kostant 56,
D’Atri-Ziller 79). Thus for A ∈ sym(p)K ,

Cµp(A) = −
∑

[adp Xi , [adp Xi ,A]] = 0 ⇔ [adp Xi ,A] = 0 ∀i ⇔ A = aI ,

that is, Ker Cµp = RI . But therefore Ker d Rc |g = Rg by the above
lemma and so g is Ricci locally invertible by our first theorem.
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Theorem ( [L.-Will, 20] )

Let g ∈MG be a de Rham irreducible metric. If g is naturally reductive
with respect to G and Sc(g) 6= 0, then g is Ricci locally invertible.

• For any compact G there is a normal metric g ∈MG , which is of
course naturally reductive and has Sc(g) > 0. If in addition
M 6= G1/K1×G2/K2, then g is irreducible and so Ricci locally invertible.

• [D’Atri-Ziller 79] If M = H is a compact semisimple Lie group and
G = H × K , where K ⊂ H, then any g ∈MG (i.e., any left-invariant g
on H which is in addition Ad(K )-invariant) is naturally reductive w.r.t.
G . For H simple g is always irreducible, so g is Ricci locally invertible as
soon as Sc(g) 6= 0.

• [D’Atri-Ziller 79, Gordon 85] Any Ad(K )-invariant metric on a
non-compact semisimple M = H, K ⊂ H maximal compact, is also
naturally reductive w.r.t. G = H × K If H simple and Sc(g) 6= 0 then g
is Ricci locally invertible.
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• [Gordon 85] Two-step nilpotent Lie groups N attached to
representations of compact Lie groups admit naturally reductive metrics
w.r.t. G = K n N, where K = Aut(n) ∩O(n). If N indecomposable
then Ricci locally invertible.

• [Gordon 85] Structure theorem for naturally reductive spaces: they are
all ”amalgamated” constructions, in a very specified way, of the above
three types.

• [Kowalski, Tricerri, Vanhecke, 80s] [Agricola, Ferreira, Friedrich, Storm,
2015-] Classification results of naturally reductive spaces in dimension
≤ 8.

• If M = G is a 2-step nilpotent Lie group with non-trivial abelian factor
(i.e., [n, n] 6= z(n)), then MG

inv is empty.

• MG
inv is open and dense for M = G = SU(2)× S1.
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Many thanks for your attention.

Happy Birthday Dmitri !!
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