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Setup

Classical Lipschitz-Killing curvatures

(M,g): a Riemannian manifold, Rg : the Riemann curvature tensor.

Lipschitz-Killing curvatures are the integrals

S2k (g) :=

∫
M

tr(Rk
g ) dvolg , k = 0,1, . . . ,

⌊n
2

⌋
,

where Rk
g : Λ2kTpM → Λ2kTpM.

In particular,

S0(g) = vol(g), S2(g) =

∫
M

scalg dvolg

For n even, Sn is proportional to the Euler characteristic
(Chern-Gauss-Bonnet theorem), thus independent of g.
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Setup

Weyl’s tube formula
M ⊂ Rp: an n-dimensional submanifold, g: the induced metric on M.

Theorem (Weyl)
For all r sufficiently small, the volume of the r -neighborhood (the tube)
around M is a polynomial in r with coefficients proportional to the
Lipschitz-Killing curvatures of (M,g):

vol(Br (M)) =

b n
2 c∑

k=0

c(p,n, k)S2k (g)rp−n+2k

In particular, the coefficients depend on g only.

Example: for a surface in R3 one has

vol(Br (M)) = 2r area(M) +
4π
3

r3χ(M).
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Setup

Euclidean cone-manifolds
... also known as piecewise flat spaces or polyhedral manifods, are
discrete analoga of Riemannian manifolds.

Constructive definition
A Euclidean cone-manifold is a manifold glued from Euclidean
polyhedra by isometries between their faces.

Example 1: gluing regular tetrahedra.

If one proceeds by surrounding each vertex by 20 tetrahedra, one
gets...
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Setup

Euclidean cone-manifolds: examples

...a Euclidean cone-metric on S3,
the boundary of the 600-cell, a
regular 4-dimensional polyhedron.

The skeleton of the 600-cell:

Example 2: “Fold” each face of a
parallelepiped as shown.

Get a Euclidean cone-metric on S3

with Borromean rings as the
singular locus.
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Setup

Euclidean cone-manifolds

Combinatorics is not important; important is the metric structure.

Descriptive definition
A Euclidean cone-manifold is a manifold with an atlas with values in
certain model spaces (defined by induction on the dimension).

In dimension 2 a singular point is characterized by the angle ω 6= 2π
around this point. The angle deficit κ = 2π − ω is called the curvature.
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Setup

Discrete Gauss-Bonnet theorem
Theorem
For every Euclidean cone-metric on a closed surface M one has∑

κi = 2πχ(M).

Proof.
Triangulate the surface.

V − E + F = χ(M)

2E = 3F

}
⇒ V − F

2
= χ(M)

∑
ωi =

∑
(αj + βj + γj) = πF∑

κi = 2πV −
∑

ωi = 2π
(

V − F
2

)
= 2πχ(M)
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Regge functional

Regge functional or discrete total scalar curvature

This is the discrete analog of the Einstein-Hilbert functional, i. e. of the
total scalar curvature.

Definition
If dim M = 3, and c is a Euclidean cone-metric on M, then

S∆
2 (c) =

∑
e

`eκe,

where the sum is over all “edges” of c.

ωe

`e
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Regge functional

Regge functional in higher dimensions
Definition
If dim M = n, and c is a Euclidean cone-metric on M, then

S∆
2 (c) =

∑
Qi⊂Σn−2

voln−2(Qi)κ(M/Qi).

The singular locus Σ of M is stratified:

Σ = Σ0 ∪ Σ1 ∪ · · · ∪ Σn−2.

Σk is the union of open k -manifolds Qi ; each Qi has a “normal space”
M/Qi which is a cone-manifold; the neighborhood of every point
p ∈ Qi is isometric to U × (M/Qi),U ⊂ Rk .

For k = n − 2, M/Qi is a 2-dimensional cone
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Regge functional

Variational property of the Regge functional

Fix a triangulation of a cone-manifold M of dim M = 3.
Vary the metric by changing the edge lengths.
Recall: S2(`) =

∑
e `eκe.

Theorem

∂S∆
2

∂`e
= κe

Proof.
Follows from the Schläfli formula for a Euclidean tetrahedron:∑

e

`edωe = 0.
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Regge functional

Variational property of the Regge functional

Formula ∂S∆
2

∂`e
= κe implies that critical points of S2 corresponds to

Euclidean metrics on M.

Compare this to the first variation of the Einstein-Hilbert functional:

∂

∂t

∣∣∣∣
t=0

S2(g + th) =

∫
M

〈
scalg

2
g − Ricg ,h

〉
dvolg

In dimensions n > 2, critical points of S2 are Ricci-flat metrics.
For n = 3 Ricci-flat means flat (Euclidean).

On the space of metrics of fixed volume, critical points are Einstein
metrics Ric = λg. Again, for n = 3 this reduces to sec = const.
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Regge functional

Geometrization of 3-manifolds

Theorem (Geometrization theorem)
Closed 3-dimensional manifolds can be cut into pieces carrying one of
the eight standard geometries.

An approach based on variational properties of the Einstein-Hilbert
functional was being developed in 1990’s.
This was preceded by Yamabe’s attempt to solve the Poincaré
conjecture with a similar approach.

The Regge functional approach: tempting but meets with difficulties.
A dual approach: Casson–Rivin, variational properties of the volume of
ideal hyperbolic tetrahedra.
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Regge functional

Geometrization with boundary conditions

Open 3-manifolds (irreducible, atoroidal) may carry infinitely many
different hyperbolic structures.
One can try to fix the structure by fixing its behavior at infinity or on the
boundary.

Theorem (Fillastre’07)
Given a hyperbolic cone-metric with positive singular curvatures on a
surface of genus > 1, there is a unique Fuchsian manifold with convex
polyhedral boundary carrying this metric.

[Prosanov’20]: a variational proof based on the Regge functional.
Luo, Springborn,...: this and similar theorems can be interpreted as
“discrete uniformization”.
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Regge functional

Isometric embeddings

Theorem (Alexandrov)
Given a Euclidean cone-metric with positive singular curvatures on the
sphere, there is a unique convex Euclidean polyhedron whose
boundary carries this metric.
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Discrete Lipschitz-Killing curvatures

External angles

For a simplex σ and a vertex v of σ define
the (normalized) internal angle α(v , σ);
the (normalized) external angle β(v , σ).

Theorem (Discrete Gauss-Bonnet-Hopf theorem)
For every simplex σ one has∑

v∈σ
β(v , σ) = 1.
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Discrete Lipschitz-Killing curvatures

Discrete Chern-Gauss-Bonnet theorem
Definition
Let (M, c) be a Euclidean cone-manifold and T its triangulation. Define
the Chern-Gauss-Bonnet density as a function on the vertex set of T

r(v) =
∑
σ3v

(−1)dimσβ(v , σ).

Theorem ∑
v

r(v) = χ(M)

Proof.∑
v

r(v) =
∑

v

∑
σ

(−1)dimσβ(v , σ) =
∑
σ

(−1)dimσ
∑

v

β(v , σ)

=
∑
σ

(−1)σ =
n∑

k=0

(−1)k fk (T ) = χ(T ) = χ(M)
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Discrete Lipschitz-Killing curvatures

Properties of the CGB density
[Cheeger, Müller, Schrader’86]: On the curvature of piecewise flat
spaces

1. Function r is independent of the choice of a triangulation T .
2. If a sequence cn of cone-metrics converges to a Riemannian

metric g in a good way (there are triangulations Tn of cn whose
simplices are not too thin), then rn converges to the Riemannian
Chern-Gauss-Bonnet density.

3. If (M, c) is embedded as a polyhedral hypersurface, then r(v) is
equal to the external angle at v .

Other Lipschitz-Killing densities are defined as

r(τ) =
∑
σ⊃τ

(−1)dimσ−dim τβ(τ, σ)

and have similar properties.
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Discrete Lipschitz-Killing curvatures

Peter McMullen’s identities

Let v be a vertex of a simplex σ. Then one has∑
v≤τ≤σ

α(v , τ)β(τ, σ) = 1

∑
v≤τ≤σ

(−1)dim τα(v , τ)β(τ, σ) = 0

Can use any of these to express the external angle β(v , σ) in terms of
internal angles and external angles of smaller dimension. For example,

β(v , σ) = −
∑

v≤τ<σ
(−1)dim τα(v , τ)β(τ, σ)
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Discrete Lipschitz-Killing curvatures

Another formula for the discrete CGB density

Substituting β(v , σ) = −
∑

v≤τ<σ(−1)dim τα(v , τ)β(τ, σ) into
r(v) =

∑
σ3v (−1)dimσβ(v , σ) one gets

r(v) = 1−
∑
σ>v

α(v , σ)r(σ).

By induction,

r(v) =
∑
k≥0

∑
v<σ1<···<σk

(−1)kα(v , σ1)α(σ1, σ2) · · ·α(σk−1, σk ).

Intrinsically,

r(v) =
∑
k≥0

∑
v<Q1<···<Qk

(−1)kα(v ,Q1)α(Q1,Q2) · · ·α(Qk−1,Qk ).
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Discrete Lipschitz-Killing curvatures

Yet another formula for the discrete CGB density
Adding the McMullen identities∑

v≤τ≤σ
α(v , τ)β(τ, σ) = 1

∑
v≤τ≤σ

(−1)dim τα(v , τ)β(τ, σ) = 0

one gets rid of τ with dim τ odd and obtains the formula

r(v) =
∑
k≥0

∑
v<Q1<···<Qk

(−1)kα(v ,Q1)α(Q1,Q2) · · ·α(Qk−1,Qk ),

where the summation goes only over the even-dimensional strata.

This generalizes the formula for n = 2: r(v) = κ = 1− α(v ,Q), where
Q is the (unique) 2-dim stratum adjacent to v .
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