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Grassmann algebra (Grn,∧)

Rn, e1, . . . , en is set of basis elements
Free associative anticommutative distributive algebra over e1, . . . , en is
called Grassmann algebra Grn together with bilinear product ∧.

Linear subspace A ∈ Grn

x ∈ A ⇔ x ∧ A = 0

Example: A = e1 ∧ e2

x ∧ A = (
∑

xiei) ∧ e1 ∧ e2 =
∑
i ̸=1,2

xi(ei ∧ e1 ∧ e2)

x ∧ A = 0 ⇔ xi = 0, i = 3, . . . , n ⇔ x = x1e1 + x2e2

Grn = R+ Rn + ∧2Rn + · · ·+ ∧n−1Rn + ∧nRn

= R+ lines + planes + · · ·+ hyperplanes + volume element
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Clifford algebra Gn

Euclidean scalar product · on Rn, quadratic vector space Rn := Rn,0,0

defines to Clifford algebra Gn with signature (n, 0, 0)

Geometric product on vectors Rn ⊂ Gn

u · v = 1
2(uv + vu), u ∧ v = 1

2(uv − vu), uv = u · v + u ∧ v

Operations

u ∧ v = ⟨uv⟩k+l,

u · v = ⟨uv⟩|k−l|,

u⌊v = ⟨uv⟩k−l,

u⌋v = ⟨uv⟩l−k,

u ∈ ∧kRn, v ∈ ∧lRn

Jaroslav Hrdina ( Brno University of Technology, Faculty of Mechanical Engeneering, Czech Republic)Clifford algebras and engineering applications September 9, 2020 4 / 31



Lie group of Versors

Reflection with respect to hyperplane perpendicular to a ∈ Rn

x 7→ x − 2(x · a)a
||a||2 = x − (xa + ax)a

a2 = axa−1,

G = {a1 · · · al | a2
i = 1, ai ∈ Rn} versors

Example: u, v ∈ Rn, uv = u · v + u ∧ v = cos(u, v) + sin(u, v)u ∧ v rotation
with respect to the plane u ∧ v.
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Duality
Hodge duality

A ∧ A∗ = (A · A∗)e1 · · · en

algebraically A∗ = −Ae1 · · · en
For example line t ∈ Rn is a dual to (n − 1)−vector −te1 · · · en which is
hyperplane.

(x ∧ A)∗ = x · A∗  dual representation x ∈ A∗ ⇔ x · A∗ = 0

A,B ∈ Gn
A is a linear subspace generated by u1, . . . , ul1 and B is a linear subspace
generated by v1, . . . , vl2 . Then

x · (A∗ ∧ B∗) = (x · A∗) ∧ B∗ + A∗ ∧ (x · B∗)

x ∈ (A∗ ∧ B∗) ⇔ x ∈ A∗ and x ∈ B∗

So ∧ is an intersection on dual representation.
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Lie algebra TeG

Curve a1(t) · · · al(t) ∈ G, such that a1(0) · · · al(0) = e:

∂t(a1(t) · · · al(t)) = ȧ1(t)a2(t) · · · al(t) + a1(t)ȧ2(t) · · · al(t) + · · ·
+ a1(t)a2(t) · · · ȧl(t)
= ȧ1(t)a1(t)a1(t)a2(t) · · · al(t) + a1(t)ȧ2(t)a2(t)a2(t) · · · al(t) + · · ·
+ a1(t)a2(t) · · · ȧl(t)al(t)al(t)
⇒t=0 ȧ1(0)a1(0) + ȧ2(0)a2(0) + · · ·+ ȧl(t)al(t)
= ȧ1(0) ∧ a1(0) + ȧ2(0) ∧ a2(0) + · · ·+ ȧl(t) ∧ al(t)

because ai(t)2 = 1 ⇒ ai(t) · ȧi(t) = 0

 TeG ∼= ∧2Rn = so(n)
Example: G3, ∧2R3 = ImH, Versor group G = Spin(3)
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Rigid body motion

Lie group and Lie algebra
Lie group

Spin(n)nRn →2:1→ SO(n)nRn,

Lie algebra so(n)nRn, dimension (n)(n−1)
2 + n = (n+1)(n)

2 =
(n+1

2
)
.

 ∧2Rn+1 ∼= so(n)nRn, basis e1, . . . , en, e, such that
∧2⟨e1, . . . , en⟩ ∼= so(n)
and
e ∧ ⟨e1, . . . , en⟩ ∼= Rn is commutative subalgebra, so
0 = [e ∧ e1, e ∧ e2] = ee1ee2 − ee2ee1 = e2(2e2e1) ⇒ e2 = 0
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Affine extension (PGA)

ι : Rn ↪→ Gn,0,1,

A ∈ ∧2Rn+1, exp(tA) : ι(Rn) → ι(Rn) ∈ Spin(n)nRn,
A = e ∧ t, t ∈ ⟨e1, . . . , en⟩ {translation}

exp(tA)ι(0) exp(−At) = ι(0 + t)

The first hint can be ι(0) = e, but
exp(tA)e exp(−At) = (1 + 1

2e ∧ t)e(1 − 1
2e ∧ t) = e

The right choice is ι(0) = e1 · · · en:
exp(tA)e1 · · · en exp(−At) = (1 + 1

2e ∧ t)e1 · · · en(1 − 1
2e ∧ t) =

e1 · · · en + t1ee2 · · · en + t2ee1e2 · · · en + · · ·+ ee1 · · · en−1

Rn → hyperplanes

One of the problems is a lack of duality A∗∗ = 0
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Conformal geometric algebra (CGA)

Rn ↪→ Gn+1,1,0

The elements e1, . . . , en, e+ and e− such that e2
+ = 1 and e2

− = −1
Introduce e0 = e− + e+ and e∞ = 1

2(e− − e+), such that e2
0 = e2

∞ = 0 and
e0e∞ + e∞e0 = −2. Two copies of affine extension PGA:
CGA0 = e1, . . . , en, e0 and CGA∞ = e1, . . . , en, e∞

Rn ↪→ CGA0, ∧2CGA∞ ∼= so(n)nRn

TeT∗ = exp(e∞ ∧ t)e0 exp(e∞ ∧ t) = (1 +
1
2e∞t)e0(1 − 1

2e∞t)

= e0 − e0
1
2e∞t + 1

2e∞te0 −
1
2e∞te0

1
2e∞t

= e0 −
1
2 t(e0e∞ + e∞e0)−

1
4 t2(−2 + e0e∞)e∞

= e0 +
1
2 t + 1

2 t2e∞

t ↪→ e0 + t + 1
2 t2e∞ =: tc
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CGA basic objects

t2
c = (e0 + t + 1

2 t2e∞)2 = −1
2 t2 + t2 − 1

2 t2 = 0 null cone

t1 · t2 = (e0 + t1 +
1
2 t2

1e∞) · (e0 + t1 +
1
2 t2

1e∞)

= −1
2 t2

2 + t2
1 −

1
2 t2

1 = −1
2 ||t2 − t1||2 norm linearisation

e∞ · t = e∞ · (e0 + t1 +
1
2 t2

1e∞) = −1 normalisation

Hyperplane as a bisector of two points P1 and P2

x · P1 = x · P2 ⇒ x · (P1 − P2) = 0 ⇒ (P1 − P2)
∗hyperplane

Sphere with the center c and radius ρ

x·c = −1
2ρ

2 ⇒ x·c =
1
2ρ

2(x·e∞) ⇒ x·(c−1
2ρ

2e∞) = 0 ⇒ (c−1
2ρ

2e∞)∗ sphere
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Direct representation
A point pair (0D sphere), is defined by two points

P1 ∧ P2.

A circle (1D sphere) is defined by three points

P1 ∧ P2 ∧ P3

or a point pair and a point. Finally, a sphere (2D sphere) is defined by four
points

P1 ∧ P2 ∧ P3 ∧ P4

or two point pairs, etc. A plane and line can also be defined by points that
lie on it and by the point at infinity, i.e. a line is represented by

P1 ∧ P2 ∧ e∞

and a plane by
P1 ∧ P2 ∧ P3 ∧ e∞.
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Dual representation

In the dual representation, a sphere can be represented by its center c and
its radius ρ as

c − 1
2ρ

2e∞.

A plane is defined as
n + de∞,

where n is the unit normal vector of the plane and d is the distance to the
origin.
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Meet

In this sense, the wedge product is a constructive operator, i.e. A ∧ B is an
object spanned by A and B. The duality operator allows to define of the
dual to wedge product, so called meet,

A ∨ B = (A∗ ∧ B∗)∗.

Geometrically, this gives a CGA representative of the intersection of
objects A and B.
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Rigid body motions in 3D

The translation in the direction t = t1e1 + t2e2 + t3e3 is realized by the
multivector (translator)

T = 1 − 1
2 te∞

and the rotation around the origin and the normalized axis
L = L1e1 + L2e2 + L3e3 by an angle ϕ is realized by the multivector (rotor)

R = e−
1
2 lϕ = cos

ϕ

2 − l sin ϕ

2 ,

where l = L∗
3D = L(e1 ∧ e2 ∧ e3) = L1(e2 ∧ e3) + L2(e3 ∧ e1) + L3(e1 ∧ e2).

The rotation around a general point and axis is then a composition TRT̃
of the translation to the origin, rotation R and reverse translation. A
general composition of a translator with a rotor is called a motor.
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Realisation
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Pose estimation

L = (F1 ∧ L1) ∨ (F2 ∧ L2).

Lk = (L ∧ Fk) ∨ πk, k = 1, 2,
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Camera position

focal distance f = −2
√

F · P,
camera direction (F − P) ∧ e∞,
camera plane π = P ∧ Q ∧ (F ∧ P ∧ e∞)∗.
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Camera position

the actual position of the camera center is

F = MF0M̃, (1)

and the actual position of the image plane is given by

π = Mπ0M̃. (2)
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Realisation

In this case, the system can be described by the following set of motors.

M1 = R1T1,

M2 = R2R1T2,
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Realisation

where the translations T1,T2 and the rotations R1, R2 are given by

T1 = 1 − 1
2 l1e2 ∧ e∞,

T2 = 1 − 1
2 l2e1 ∧ e∞,

R1 = cos(
ϕ1
2 ) + sin(

ϕ1
2 )(e3 ∧ e1),

R2 = cos(
ϕ2
2 ) + sin(

ϕ2
2 )ℓ2

and where the axis ℓ2 of the second rotation is
ℓ2 = R1(e2 ∧ e3)R̃1.
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ABB manipulator

j0

j1

j2
j3

j4

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

l01

l12

l23
l34

Ji, i = 0, · · · , 4 joints

P = j4 + v orientation

L∗
3 = J4 ∧ P ∧ e∞.
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At first we compute J3 with help of the intersection of the line L3 and
a sphere with center J4 and radius l34

S3 = J̄4 −
1
2 l234e∞.

The intersection denotes the point pair Pp3 and the corresponding point
J3 with respect to the orientation of the gripper is extracted:

Pp3 = S3 ∧ L3,

J̄3 =
−
√

Pp∗3 · Pp∗3 + Pp∗3
−e∞ · Pp∗3

.

Jaroslav Hrdina ( Brno University of Technology, Faculty of Mechanical Engeneering, Czech Republic)Clifford algebras and engineering applications September 9, 2020 25 / 31



Two link arm

B

J0

J

G0

G

α ϕ0

ϕ

SB

SG

rB

rG

rG

J ′

SB = J0 · (B ∧ e∞),SG = G − 1
2 r2

Ge∞.

rG =
√
(J0 · (G0 ∧ e∞)) · (J0 · (G0 ∧ e∞)).

J′ ∧ J = (SB ∧ SG)
∗, J′, J = (J′ ∧ J ±

√
(J′ ∧ J) · (J′ ∧ J))(e∞ · (J′ ∧ J)).
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Robotic snake

pn

pn−1

p2

p1

p0

L0

L1

L2

Ln−1

x

y

Q1

Q3

Qn−1

Qn

θ

Φ1

Φ2

Φn−1

Q2

pi(q) = Mipi(0)M̃i,M0 = T0e−θ(e1∧e2)T̃0,T0 := 1 − 1
2(xe1 + ye2)e∞,

Mi = Mi...M1M0T0 for i > 0,
Mi+1 = Tie−Φi(e1∧e2)T̃i,Ti = e−(Li−e0)∧e∞ , Li = MiLi(0)M̃i,

Qi = MiQi(0)M̃i. (3)
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Thank you for your attention
Happy Birthday Dmitri
Všechno nejlepší Dmitri
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