Clifford algebras and engineering applications GEOMETRY AND APPLICATIONS ONLINE

Jaroslav Hrdina
Brno University of Technology,
Faculty of Mechanical Engeneering, Czech Republic

September 9, 2020

(1) Geometric algebra of Euclidean space

(2) Binocular vision

4 Robotic snakes

Grassmann algebra $\left(\mathbb{G} r_{n}, \wedge\right)$

$\mathbb{R}^{n}, e_{1}, \ldots, e_{n}$ is set of basis elements

Free associative anticommutative distributive algebra over e_{1}, \ldots, e_{n} is called Grassmann algebra $\mathbb{G} r_{n}$ together with bilinear product \wedge.
Linear subspace $A \in \mathbb{G} r_{n}$

$$
x \in A \Leftrightarrow x \wedge A=0
$$

Example: $A=e_{1} \wedge e_{2}$

$$
\begin{aligned}
& x \wedge A=\left(\sum x_{i} e_{i}\right) \wedge e_{1} \wedge e_{2}=\sum_{i \neq 1,2} x_{i}\left(e_{i} \wedge e_{1} \wedge e_{2}\right) \\
& x \wedge A=0 \Leftrightarrow x_{i}=0, \quad i=3, \ldots, n \Leftrightarrow x=x_{1} e_{1}+x_{2} e_{2} \\
\mathbb{G}_{n}= & \mathbb{R}+\mathbb{R}^{n}+\wedge^{2} \mathbb{R}^{n}+\cdots+\wedge^{n-1} \mathbb{R}^{n}+\wedge^{n} \mathbb{R}^{n} \\
= & \mathbb{R}+\text { lines }+ \text { planes }+\cdots+\text { hyperplanes }+ \text { volume element }
\end{aligned}
$$

Clifford algebra \mathbb{G}_{n}

Euclidean scalar product • on \mathbb{R}^{n}, quadratic vector space $\mathbb{R}^{n}:=\mathbb{R}^{n, 0,0}$ defines to Clifford algebra \mathbb{G}_{n} with signature $(n, 0,0)$

Geometric product on vectors $\mathbb{R}^{n} \subset \mathbb{G}_{n}$
$u \cdot v=\frac{1}{2}(u v+v u), u \wedge v=\frac{1}{2}(u v-v u), u v=u \cdot v+u \wedge v$

Operations

$$
\begin{aligned}
u \wedge v & =\langle u v\rangle_{k+1} \\
u \cdot v & =\langle u v\rangle_{|k-1|} \\
u\lfloor v & =\langle u v\rangle_{k-1} \\
u\rfloor v & =\langle u v\rangle_{I-k}
\end{aligned}
$$

$u \in \wedge^{k} \mathbb{R}^{n}, v \in \wedge^{\prime} \mathbb{R}^{n}$

Lie group of Versors

Reflection with respect to hyperplane perpendicular to $a \in \mathbb{R}^{n}$

$$
x \mapsto x-\frac{2(x \cdot a) a}{\|a\|^{2}}=x-\frac{(x a+a x) a}{a^{2}}=a x a^{-1}
$$

$$
G=\left\{a_{1} \cdots a_{l} \mid a_{i}^{2}=1, a_{i} \in \mathbb{R}^{n}\right\} \text { versors }
$$

Example: $u, v \in \mathbb{R}^{n}, u v=u \cdot v+u \wedge v=\cos (u, v)+\sin (u, v) u \wedge v$ rotation with respect to the plane $u \wedge v$.

Duality

Hodge duality

$$
A \wedge A^{*}=\left(A \cdot A^{*}\right) e_{1} \cdots e_{n}
$$

algebraically $A^{*}=-A e_{1} \cdots e_{n}$
For example line $t \in \mathbb{R}^{n}$ is a dual to $(n-1)$-vector $-t e_{1} \cdots e_{n}$ which is hyperplane.

$$
(x \wedge A)^{*}=x \cdot A^{*} \rightsquigarrow \text { dual representation } x \in A^{*} \Leftrightarrow x \cdot A^{*}=0
$$

$A, B \in \mathbb{G}_{n}$

A is a linear subspace generated by $u_{1}, \ldots, u_{l_{1}}$ and B is a linear subspace generated by $v_{1}, \ldots, v_{l_{2}}$. Then

$$
\begin{gathered}
x \cdot\left(A^{*} \wedge B^{*}\right)=\left(x \cdot A^{*}\right) \wedge B^{*}+A^{*} \wedge\left(x \cdot B^{*}\right) \\
x \in\left(A^{*} \wedge B^{*}\right) \Leftrightarrow x \in A^{*} \text { and } x \in B^{*}
\end{gathered}
$$

So \wedge is an intersection on dual representation.

Lie algebra $T_{e} G$

Curve $a_{1}(t) \cdots a_{l}(t) \in G$, such that $a_{1}(0) \cdots a_{l}(0)=e$:

$$
\begin{aligned}
\partial_{t}\left(a_{1}(t) \cdots a_{l}(t)\right) & =\dot{a}_{1}(t) a_{2}(t) \cdots a_{l}(t)+a_{1}(t) \dot{a}_{2}(t) \cdots a_{l}(t)+\cdots \\
& +a_{1}(t) a_{2}(t) \cdots \dot{a}_{l}(t) \\
& =\dot{a}_{1}(t) a_{1}(t) a_{1}(t) a_{2}(t) \cdots a_{l}(t)+a_{1}(t) \dot{a}_{2}(t) a_{2}(t) a_{2}(t) \cdots a_{l}(t)+\cdots \\
& +a_{1}(t) a_{2}(t) \cdots \dot{a}_{l}(t) a_{l}(t) a_{l}(t) \\
& \Rightarrow{ }^{t=0} \dot{a}_{1}(0) a_{1}(0)+\dot{a}_{2}(0) a_{2}(0)+\cdots+\dot{a}_{l}(t) a_{l}(t) \\
& =\dot{a}_{1}(0) \wedge a_{1}(0)+\dot{a}_{2}(0) \wedge a_{2}(0)+\cdots+\dot{a}_{l}(t) \wedge a_{l}(t)
\end{aligned}
$$

$$
\text { because } a_{i}(t)^{2}=1 \Rightarrow a_{i}(t) \cdot \dot{a}_{i}(t)=0
$$

$\rightsquigarrow T_{e} G \cong \wedge^{2} \mathbb{R}^{n}=\mathfrak{s o}(n)$
Example: $\mathbb{G}_{3}, \wedge^{2} \mathbb{R}^{3}=\operatorname{Im} \mathbb{H}$, Versor group $G=\operatorname{Spin}(3)$

Rigid body motion

Lie group and Lie algebra

Lie group

$$
\operatorname{Spin}(n) \ltimes \mathbb{R}^{n} \rightarrow^{2: 1} \rightarrow S O(n) \ltimes \mathbb{R}^{n},
$$

Lie algebra $\mathfrak{s o}(n) \ltimes \mathbb{R}^{n}$, dimension $\frac{(n)(n-1)}{2}+n=\frac{(n+1)(n)}{2}=\binom{n+1}{2}$.
$\rightsquigarrow \wedge^{2} \mathbb{R}^{n+1} \cong \mathfrak{s o}(n) \ltimes \mathbb{R}^{n}$, basis e_{1}, \ldots, e_{n}, e, such that $\wedge^{2}\left\langle e_{1}, \ldots, e_{n}\right\rangle \cong \mathfrak{s o}(n)$
and
$e \wedge\left\langle e_{1}, \ldots, e_{n}\right\rangle \cong \mathbb{R}^{n}$ is commutative subalgebra, so
$0=\left[e \wedge e_{1}, e \wedge e_{2}\right]=e e_{1} e e_{2}-e e_{2} e e_{1}=e^{2}\left(2 e_{2} e_{1}\right) \Rightarrow e^{2}=0$

Affine extension (PGA)

$$
\iota: \mathbb{R}^{n} \hookrightarrow \mathbb{G}_{n, 0,1},
$$

$A \in \wedge^{2} \mathbb{R}^{n+1}, \exp (t A): \iota\left(\mathbb{R}^{n}\right) \rightarrow \iota\left(\mathbb{R}^{n}\right) \in \operatorname{Spin}(n) \ltimes \mathbb{R}^{n}$,
$A=e \wedge t, t \in\left\langle e_{1}, \ldots, e_{n}\right\rangle\{$ translation $\}$

$$
\exp (t A) \iota(0) \exp (-A t)=\iota(0+t)
$$

The first hint can be $\iota(0)=e$, but $\exp (t A) e \exp (-A t)=\left(1+\frac{1}{2} e \wedge t\right) e\left(1-\frac{1}{2} e \wedge t\right)=e$ The right choice is $\iota(0)=e_{1} \cdots e_{n}$:
$\exp (t A) e_{1} \cdots e_{n} \exp (-A t)=\left(1+\frac{1}{2} e \wedge t\right) e_{1} \cdots e_{n}\left(1-\frac{1}{2} e \wedge t\right)=$ $e_{1} \cdots e_{n}+t_{1} e e_{2} \cdots e_{n}+t_{2} e e_{1} e_{2} \cdots e_{n}+\cdots+e e_{1} \cdots e_{n-1}$

$$
\mathbb{R}^{n} \rightarrow \text { hyperplanes }
$$

One of the problems is a lack of duality $A^{* *}=0$

Conformal geometric algebra (CGA)

$$
\mathbb{R}^{n} \hookrightarrow \mathbb{G}_{n+1,1,0}
$$

The elements $e_{1}, \ldots, e_{n}, e_{+}$and e_{-}such that $e_{+}^{2}=1$ and $e_{-}^{2}=-1$ Introduce $e_{0}=e_{-}+e_{+}$and $e_{\infty}=\frac{1}{2}\left(e_{-}-e_{+}\right)$, such that $e_{0}^{2}=e_{\infty}^{2}=0$ and $e_{0} e_{\infty}+e_{\infty} e_{0}=-2$. Two copies of affine extension PGA:
$C G A_{0}=e_{1}, \ldots, e_{n}, e_{0}$ and $C G A_{\infty}=e_{1}, \ldots, e_{n}, e_{\infty}$

$$
\begin{aligned}
& \mathbb{R}^{n} \hookrightarrow C G A_{0}, \quad \wedge^{2} C G A_{\infty} \cong \mathfrak{s o}(n) \ltimes \mathbb{R}^{n} \\
& T e T^{*}= \exp \left(e_{\infty} \wedge t\right) e_{0} \exp \left(e_{\infty} \wedge t\right)=\left(1+\frac{1}{2} e_{\infty} t\right) e_{0}\left(1-\frac{1}{2} e_{\infty} t\right) \\
&= e_{0}-e_{0} \frac{1}{2} e_{\infty} t+\frac{1}{2} e_{\infty} t e_{0}-\frac{1}{2} e_{\infty} t e_{0} \frac{1}{2} e_{\infty} t \\
&= e_{0}-\frac{1}{2} t\left(e_{0} e_{\infty}+e_{\infty} e_{0}\right)-\frac{1}{4} t^{2}\left(-2+e_{0} e_{\infty}\right) e_{\infty} \\
&= e_{0}+\frac{1}{2} t+\frac{1}{2} t^{2} e_{\infty} \\
& t \hookrightarrow e_{0}+t+\frac{1}{2} t^{2} e_{\infty}=: t_{c}
\end{aligned}
$$

CGA basic objects

$$
\begin{aligned}
t_{c}^{2} & =\left(e_{0}+t+\frac{1}{2} t^{2} e_{\infty}\right)^{2}=-\frac{1}{2} t^{2}+t^{2}-\frac{1}{2} t^{2}=0 \text { null cone } \\
t_{1} \cdot t_{2} & =\left(e_{0}+t_{1}+\frac{1}{2} t_{1}^{2} e_{\infty}\right) \cdot\left(e_{0}+t_{1}+\frac{1}{2} t_{1}^{2} e_{\infty}\right) \\
& =-\frac{1}{2} t_{2}^{2}+t_{1}^{2}-\frac{1}{2} t_{1}^{2}=-\frac{1}{2}\left\|t_{2}-t_{1}\right\|^{2} \text { norm linearisation } \\
e_{\infty} \cdot t & =e_{\infty} \cdot\left(e_{0}+t_{1}+\frac{1}{2} t_{1}^{2} e_{\infty}\right)=-1 \text { normalisation }
\end{aligned}
$$

Hyperplane as a bisector of two points P_{1} and P_{2}

$$
x \cdot P_{1}=x \cdot P_{2} \Rightarrow x \cdot\left(P_{1}-P_{2}\right)=0 \Rightarrow\left(P_{1}-P_{2}\right)^{*} \text { hyperplane }
$$

Sphere with the center cand radius ρ
$x \cdot c=-\frac{1}{2} \rho^{2} \Rightarrow x \cdot c=\frac{1}{2} \rho^{2}\left(x \cdot e_{\infty}\right) \Rightarrow x \cdot\left(c-\frac{1}{2} \rho^{2} e_{\infty}\right)=0 \Rightarrow\left(c-\frac{1}{2} \rho^{2} e_{\infty}\right)^{*}$ sphere

Direct representation

A point pair (0D sphere), is defined by two points

$$
P_{1} \wedge P_{2}
$$

A circle (1D sphere) is defined by three points

$$
P_{1} \wedge P_{2} \wedge P_{3}
$$

or a point pair and a point. Finally, a sphere (2D sphere) is defined by four points

$$
P_{1} \wedge P_{2} \wedge P_{3} \wedge P_{4}
$$

or two point pairs, etc. A plane and line can also be defined by points that lie on it and by the point at infinity, i.e. a line is represented by

$$
P_{1} \wedge P_{2} \wedge e_{\infty}
$$

and a plane by

$$
P_{1} \wedge P_{2} \wedge P_{3} \wedge e_{\infty}
$$

Dual representation

In the dual representation, a sphere can be represented by its center c and its radius ρ as

$$
c-\frac{1}{2} \rho^{2} e_{\infty} .
$$

A plane is defined as

$$
n+d e_{\infty}
$$

where n is the unit normal vector of the plane and d is the distance to the origin.

Meet

In this sense, the wedge product is a constructive operator, i.e. $A \wedge B$ is an object spanned by A and B. The duality operator allows to define of the dual to wedge product, so called meet,

$$
A \vee B=\left(A^{*} \wedge B^{*}\right)^{*}
$$

Geometrically, this gives a CGA representative of the intersection of objects A and B.

Rigid body motions in 3D

The translation in the direction $t=t_{1} e_{1}+t_{2} e_{2}+t_{3} e_{3}$ is realized by the multivector (translator)

$$
T=1-\frac{1}{2} t e_{\infty}
$$

and the rotation around the origin and the normalized axis $L=L_{1} e_{1}+L_{2} e_{2}+L_{3} e_{3}$ by an angle ϕ is realized by the multivector (rotor)

$$
R=\mathrm{e}^{-\frac{1}{2} / \phi}=\cos \frac{\phi}{2}-I \sin \frac{\phi}{2}
$$

where $I=L_{3 D}^{*}=L\left(e_{1} \wedge e_{2} \wedge e_{3}\right)=L_{1}\left(e_{2} \wedge e_{3}\right)+L_{2}\left(e_{3} \wedge e_{1}\right)+L_{3}\left(e_{1} \wedge e_{2}\right)$. The rotation around a general point and axis is then a composition $T R \tilde{T}$ of the translation to the origin, rotation R and reverse translation. A general composition of a translator with a rotor is called a motor.

(1) Geometric algebra of Euclidean space

(2) Binocular vision

(3) Inverse kinematics

Realisation

Pose estimation

Camera position

- focal distance $f=-2 \sqrt{F \cdot P}$,
- camera direction $(F-P) \wedge e_{\infty}$,
- camera plane $\pi=P \wedge Q \wedge\left(F \wedge P \wedge e_{\infty}\right)^{*}$.

Camera position

the actual position of the camera center is

$$
\begin{equation*}
F=M F_{0} \tilde{M} \tag{1}
\end{equation*}
$$

and the actual position of the image plane is given by

$$
\begin{equation*}
\pi=M \pi_{0} \tilde{M} \tag{2}
\end{equation*}
$$

Realisation

In this case, the system can be described by the following set of motors.

$$
\begin{aligned}
& M_{1}=R_{1} T_{1}, \\
& M_{2}=R_{2} R_{1} T_{2},
\end{aligned}
$$

Realisation

where the translations T_{1}, T_{2} and the rotations R_{1}, R_{2} are given by

$$
\begin{aligned}
& T_{1}=1-\frac{1}{2} I_{1} e_{2} \wedge e_{\infty} \\
& T_{2}=1-\frac{1}{2} I_{2} e_{1} \wedge e_{\infty} \\
& R_{1}=\cos \left(\frac{\phi_{1}}{2}\right)+\sin \left(\frac{\phi_{1}}{2}\right)\left(e_{3} \wedge e_{1}\right), \\
& R_{2}=\cos \left(\frac{\phi_{2}}{2}\right)+\sin \left(\frac{\phi_{2}}{2}\right) \ell_{2}
\end{aligned}
$$

and where the axis ℓ_{2} of the second rotation is

$$
\ell_{2}=R_{1}\left(e_{2} \wedge e_{3}\right) \tilde{R}_{1} .
$$

(1) Geometric algebra of Euclidean space

(2) Binocular vision

(3) Inverse kinematics

4 Robotic snakes

ABB manipulator

$$
\begin{gathered}
J_{i}, \quad i=0, \cdots, 4 \text { joints } \\
P=j_{4}+v \text { orientation } \\
L_{3}^{*}=J_{4} \wedge P \wedge e_{\infty} .
\end{gathered}
$$

At first we compute J_{3} with help of the intersection of the line L_{3} and a sphere with center J_{4} and radius I_{34}

$$
S_{3}=\bar{J}_{4}-\frac{1}{2} I_{34} e_{\infty}
$$

The intersection denotes the point pair $P p_{3}$ and the corresponding point J_{3} with respect to the orientation of the gripper is extracted:

$$
\begin{gathered}
P p_{3}=S_{3} \wedge L_{3} \\
\overline{J_{3}}=\frac{-\sqrt{P p_{3}^{*} \cdot P p_{3}^{*}}+P p_{3}^{*}}{-e_{\infty} \cdot P p_{3}^{*}} .
\end{gathered}
$$

Two link arm

$$
S_{B}=J_{0} \cdot\left(B \wedge e_{\infty}\right), S_{G}=G-\frac{1}{2} r_{G}^{2} e_{\infty}
$$

$$
r_{G}=\sqrt{\left(J_{0} \cdot\left(G_{0} \wedge e_{\infty}\right)\right) \cdot\left(J_{0} \cdot\left(G_{0} \wedge e_{\infty}\right)\right)}
$$

$$
J^{\prime} \wedge J=\left(S_{B} \wedge S_{G}\right)^{*}, J^{\prime}, J=\left(J^{\prime} \wedge J \pm \sqrt{\left(J^{\prime} \wedge J\right) \cdot\left(J^{\prime} \wedge J\right)}\right)\left(e_{\infty} \cdot\left(J^{\prime} \wedge J\right)\right)
$$

(1) Geometric algebra of Euclidean space

(2) Binocular vision

4 Robotic snakes

Robotic snake

$$
\begin{gather*}
p_{i}(q)=M_{i} p_{i}(0) \tilde{M}_{i}, M_{0}=T_{0} \mathrm{e}^{-\theta\left(e_{1} \wedge e_{2}\right)} \tilde{T}_{0}, T_{0}:=1-\frac{1}{2}\left(x e_{1}+y e_{2}\right) e_{\infty}, \\
\mathbf{M}_{i}=M_{i} \ldots M_{1} M_{0} T_{0} \text { for } i>0, \\
M_{i+1}=T_{i} \mathrm{e}^{-\Phi_{i}\left(e_{1} \wedge e_{2}\right)} \tilde{T}_{i}, T_{i}=\mathrm{e}^{-\left(L_{i}-e_{0}\right) \wedge e_{\infty}}, L_{i}=\mathbf{M}_{i} L_{i}(0) \tilde{\mathbf{M}}_{i}, \\
Q_{i}=\mathbf{M}_{i} Q_{i}(0) \tilde{\mathbf{M}}_{i} . \tag{3}
\end{gather*}
$$

Thank you for your attention Happy Birthday Dmitri Všechno nejlepší Dmitri

