# Clifford algebras and engineering applications GEOMETRY AND APPLICATIONS ONLINE

#### Jaroslav Hrdina

Brno University of Technology, Faculty of Mechanical Engeneering, Czech Republic

September 9, 2020



Jaroslav Hrdina (Brno University of TechnoClifford algebras and engineering applications



#### Geometric algebra of Euclidean space

#### 2 Binocular vision

Inverse kinematics



# Grassmann algebra ( $\mathbb{G}r_n$ , $\wedge$ )

 $\mathbb{R}^n, e_1, \ldots, e_n$  is set of basis elements

Free associative anticommutative distributive algebra over  $e_1, \ldots, e_n$  is called Grassmann algebra  $\mathbb{G}r_n$  together with bilinear product  $\wedge$ .

#### Linear subspace $A \in \mathbb{G}r_n$

 $x \in A \Leftrightarrow x \wedge A = 0$ 

Example:  $A = e_1 \wedge e_2$ 

$$x \wedge A = (\sum x_i e_i) \wedge e_1 \wedge e_2 = \sum_{i \neq 1,2} x_i (e_i \wedge e_1 \wedge e_2)$$

 $x \wedge A = 0 \Leftrightarrow x_i = 0, \ i = 3, \dots, n \Leftrightarrow x = x_1 e_1 + x_2 e_2$ 

 $\mathbb{G}r_n = \mathbb{R} + \mathbb{R}^n + \wedge^2 \mathbb{R}^n + \dots + \wedge^{n-1} \mathbb{R}^n + \wedge^n \mathbb{R}^n$  $= \mathbb{R} + \text{ lines } + \text{ planes } + \dots + \text{ hyperplanes } + \text{ volume element}$ 

# Clifford algebra $\mathbb{G}_n$

Euclidean scalar product  $\cdot$  on  $\mathbb{R}^n$ , quadratic vector space  $\mathbb{R}^n := \mathbb{R}^{n,0,0}$  defines to Clifford algebra  $\mathbb{G}_n$  with signature (n,0,0)

Geometric product on vectors  $\mathbb{R}^n \subset \mathbb{G}_n$ 

$$u \cdot v = \frac{1}{2}(uv + vu), u \wedge v = \frac{1}{2}(uv - vu), uv = u \cdot v + u \wedge v$$

#### Operations

$$u \wedge v = \langle uv \rangle_{k+l},$$
  

$$u \cdot v = \langle uv \rangle_{|k-l|},$$
  

$$u \lfloor v = \langle uv \rangle_{k-l},$$
  

$$u \rfloor v = \langle uv \rangle_{l-k},$$

 $u \in \wedge^k \mathbb{R}^n, v \in \wedge^l \mathbb{R}^n$ 

### Reflection with respect to hyperplane perpendicular to $a \in \mathbb{R}^n$

$$x \mapsto x - \frac{2(x \cdot a)a}{||a||^2} = x - \frac{(xa + ax)a}{a^2} = axa^{-1},$$

$$G = \{a_1 \cdots a_i \mid a_i^2 = 1, a_i \in \mathbb{R}^n\}$$
 versors

Example:  $u, v \in \mathbb{R}^n$ ,  $uv = u \cdot v + u \wedge v = \cos(u, v) + \sin(u, v)u \wedge v$  rotation with respect to the plane  $u \wedge v$ .

# Duality

Hodge duality

$$A \wedge A^* = (A \cdot A^*)e_1 \cdots e_n$$

algebraically  $A^* = -Ae_1 \cdots e_n$ For example line  $t \in \mathbb{R}^n$  is a dual to (n-1)-vector  $-te_1 \cdots e_n$  which is hyperplane.

 $(x \wedge A)^* = x \cdot A^* \rightsquigarrow$  dual representation  $x \in A^* \Leftrightarrow x \cdot A^* = 0$ 

### $A, B \in \mathbb{G}_n$

A is a linear subspace generated by  $u_1, \ldots, u_{l_1}$  and B is a linear subspace generated by  $v_1, \ldots, v_{l_2}$ . Then

$$x \cdot (A^* \wedge B^*) = (x \cdot A^*) \wedge B^* + A^* \wedge (x \cdot B^*)$$

$$x \in (A^* \wedge B^*) \Leftrightarrow x \in A^* \text{ and } x \in B^*$$

So  $\wedge$  is an intersection on dual representation.

## Lie algebra $T_eG$

Curve 
$$a_1(t) \cdots a_l(t) \in G$$
, such that  $a_1(0) \cdots a_l(0) = e$ :  
 $\partial_t (a_1(t) \cdots a_l(t)) = \dot{a}_1(t)a_2(t) \cdots a_l(t) + a_1(t)\dot{a}_2(t) \cdots a_l(t) + \cdots + a_1(t)a_2(t) \cdots \dot{a}_l(t)$   
 $= \dot{a}_1(t)a_1(t)a_1(t)a_2(t) \cdots a_l(t) + a_1(t)\dot{a}_2(t)a_2(t)a_2(t) \cdots a_l(t) + \cdots + a_1(t)a_2(t) \cdots \dot{a}_l(t)a_l(t)$   
 $\Rightarrow^{t=0} \dot{a}_1(0)a_1(0) + \dot{a}_2(0)a_2(0) + \cdots + \dot{a}_l(t)a_l(t)$   
 $= \dot{a}_1(0) \wedge a_1(0) + \dot{a}_2(0) \wedge a_2(0) + \cdots + \dot{a}_l(t) \wedge a_l(t)$   
because  $a_i(t)^2 = 1 \Rightarrow a_i(t) \cdot \dot{a}_i(t) = 0$ 

$$\stackrel{\longrightarrow}{\rightarrow} T_e G \cong \wedge^2 \mathbb{R}^n = \mathfrak{so}(n)$$
  
Example:  $\mathbb{G}_3$ ,  $\wedge^2 \mathbb{R}^3 = \text{Im}\mathbb{H}$ , Versor group  $G = Spin(3)$ 

#### Lie group and Lie algebra

Lie group

$$Spin(n) \ltimes \mathbb{R}^n \to 2^{:1} \to SO(n) \ltimes \mathbb{R}^n$$
,

Lie algebra  $\mathfrak{so}(n) \ltimes \mathbb{R}^n$ , dimension  $\frac{(n)(n-1)}{2} + n = \frac{(n+1)(n)}{2} = \binom{n+1}{2}$ .

$$\rightsquigarrow \wedge^2 \mathbb{R}^{n+1} \cong \mathfrak{so}(n) \ltimes \mathbb{R}^n$$
, basis  $e_1, \ldots, e_n, e$ , such that  
 $\wedge^2 \langle e_1, \ldots, e_n \rangle \cong \mathfrak{so}(n)$   
and  
 $e \land \langle e_1, \ldots, e_n \rangle \cong \mathbb{R}^n$  is commutative subalgebra, so  
 $0 = [e \land e_1, e \land e_2] = ee_1ee_2 - ee_2ee_1 = e^2(2e_2e_1) \Rightarrow e^2 = 0$ 

# Affine extension (PGA)

$$\iota:\mathbb{R}^n\hookrightarrow\mathbb{G}_{n,0,1},$$

 $A \in \wedge^2 \mathbb{R}^{n+1}, \exp(tA) : \iota(\mathbb{R}^n) \to \iota(\mathbb{R}^n) \in Spin(n) \ltimes \mathbb{R}^n,$  $A = e \land t, t \in \langle e_1, \dots, e_n \rangle \text{ {translation}}$ 

$$exp(tA)\iota(0)\exp(-At) = \iota(0+t)$$

The first hint can be 
$$\iota(0) = e$$
, but  
 $\exp(tA)e\exp(-At) = (1 + \frac{1}{2}e \wedge t)e(1 - \frac{1}{2}e \wedge t) = e$   
The right choice is  $\iota(0) = e_1 \cdots e_n$ :  
 $\exp(tA)e_1 \cdots e_n \exp(-At) = (1 + \frac{1}{2}e \wedge t)e_1 \cdots e_n(1 - \frac{1}{2}e \wedge t) = e_1 \cdots e_n + t_1ee_2 \cdots e_n + t_2ee_1e_2 \cdots e_n + \cdots + ee_1 \cdots e_{n-1}$ 

 $\mathbb{R}^n \to \text{hyperplanes}$ 

One of the problems is a lack of duality  $A^{**} = 0$ 

### Conformal geometric algebra (CGA)

 $\mathbb{R}^n \hookrightarrow \mathbb{G}_{n+1,1,0}$ 

The elements  $e_1, \ldots, e_n$ ,  $e_+$  and  $e_-$  such that  $e_+^2 = 1$  and  $e_-^2 = -1$ Introduce  $e_0 = e_- + e_+$  and  $e_{\infty} = \frac{1}{2}(e_- - e_+)$ , such that  $e_0^2 = e_{\infty}^2 = 0$  and  $e_0e_{\infty} + e_{\infty}e_0 = -2$ . Two copies of affine extension PGA:  $CGA_0 = e_1, \ldots, e_n, e_0$  and  $CGA_{\infty} = e_1, \ldots, e_n, e_{\infty}$ 

$$\mathbb{R}^n \hookrightarrow CGA_0, \quad \wedge^2 CGA_{\infty} \cong \mathfrak{so}(n) \ltimes \mathbb{R}^n$$

$$TeT^* = \exp(e_{\infty} \wedge t)e_0 \exp(e_{\infty} \wedge t) = (1 + \frac{1}{2}e_{\infty}t)e_0(1 - \frac{1}{2}e_{\infty}t)$$
$$= e_0 - e_0\frac{1}{2}e_{\infty}t + \frac{1}{2}e_{\infty}te_0 - \frac{1}{2}e_{\infty}te_0\frac{1}{2}e_{\infty}t$$
$$= e_0 - \frac{1}{2}t(e_0e_{\infty} + e_{\infty}e_0) - \frac{1}{4}t^2(-2 + e_0e_{\infty})e_{\infty}$$
$$= e_0 + \frac{1}{2}t + \frac{1}{2}t^2e_{\infty}$$

 $t \hookrightarrow e_0 + t + -t^2 e_\infty =: t_c$ 

Jaroslav Hrdina (Brno University of TechnoClifford algebras and engineering applications

## CGA basic objects

$$\begin{aligned} t_c^2 &= (e_0 + t + \frac{1}{2}t^2e_\infty)^2 = -\frac{1}{2}t^2 + t^2 - \frac{1}{2}t^2 = 0 \text{ null cone} \\ t_1 \cdot t_2 &= (e_0 + t_1 + \frac{1}{2}t_1^2e_\infty) \cdot (e_0 + t_1 + \frac{1}{2}t_1^2e_\infty) \\ &= -\frac{1}{2}t_2^2 + t_1^2 - \frac{1}{2}t_1^2 = -\frac{1}{2}||t_2 - t_1||^2 \text{ norm linearisation} \\ e_\infty \cdot t &= e_\infty \cdot (e_0 + t_1 + \frac{1}{2}t_1^2e_\infty) = -1 \text{ normalisation} \end{aligned}$$

Hyperplane as a bisector of two points  $P_1$  and  $P_2$ 

$$x \cdot P_1 = x \cdot P_2 \Rightarrow x \cdot (P_1 - P_2) = 0 \Rightarrow (P_1 - P_2)^*$$
hyperplane

Sphere with the center c and radius  $\rho$ 

$$x \cdot c = -\frac{1}{2}\rho^2 \Rightarrow x \cdot c = \frac{1}{2}\rho^2(x \cdot e_{\infty}) \Rightarrow x \cdot (c - \frac{1}{2}\rho^2 e_{\infty}) = 0 \Rightarrow (c - \frac{1}{2}\rho^2 e_{\infty})^* \text{ sphere}$$

### Direct representation

A point pair (0D sphere), is defined by two points

 $P_1 \wedge P_2$ .

A circle (1D sphere) is defined by three points

 $P_1 \wedge P_2 \wedge P_3$ 

or a point pair and a point. Finally, a sphere (2D sphere) is defined by four points

$$P_1 \wedge P_2 \wedge P_3 \wedge P_4$$

or two point pairs, etc. A plane and line can also be defined by points that lie on it and by the point at infinity, i.e. a line is represented by

$$P_1 \wedge P_2 \wedge e_\infty$$

and a plane by

$$P_1 \wedge P_2 \wedge P_3 \wedge e_\infty.$$

In the dual representation, a sphere can be represented by its center c and its radius  $\rho$  as

$$c-\frac{1}{2}
ho^2 e_{\infty}.$$

A plane is defined as

 $n + de_{\infty}$ ,

where n is the unit normal vector of the plane and d is the distance to the origin.

In this sense, the wedge product is a constructive operator, i.e.  $A \wedge B$  is an object spanned by A and B. The duality operator allows to define of the dual to wedge product, so called *meet*,

$$A \vee B = (A^* \wedge B^*)^*.$$

Geometrically, this gives a CGA representative of the intersection of objects A and B.

## Rigid body motions in 3D

The translation in the direction  $t = t_1e_1 + t_2e_2 + t_3e_3$  is realized by the multivector (*translator*)

$$T = 1 - \frac{1}{2}te_{\infty}$$

and the rotation around the origin and the normalized axis  $L = L_1 e_1 + L_2 e_2 + L_3 e_3$  by an angle  $\phi$  is realized by the multivector (*rotor*)

$$R = \mathrm{e}^{-\frac{1}{2}I\phi} = \cos\frac{\phi}{2} - I\sin\frac{\phi}{2},$$

where  $I = L_{3D}^* = L(e_1 \land e_2 \land e_3) = L_1(e_2 \land e_3) + L_2(e_3 \land e_1) + L_3(e_1 \land e_2)$ . The rotation around a general point and axis is then a composition  $TR\tilde{T}$  of the translation to the origin, rotation R and reverse translation. A general composition of a translator with a rotor is called a motor.



Geometric algebra of Euclidean space

### 2 Binocular vision

3 Inverse kinematics



## Realisation



Jaroslav Hrdina (Brno University of TechnoClifford algebras and engineering applications

### Pose estimation



## Camera position



- focal distance  $f = -2\sqrt{F \cdot P}$ ,
- camera direction  $(F P) \land e_{\infty}$ ,
- camera plane  $\pi = P \land Q \land (F \land P \land e_{\infty})^*$ .

## Camera position



the actual position of the camera center is

$$F = MF_0 \tilde{M},\tag{1}$$

and the actual position of the image plane is given by

$$\pi = M \pi_0 \tilde{M}.$$
 (2)

## Realisation



In this case, the system can be described by the following set of motors.

$$M_1 = R_1 T_1,$$
  
 $M_2 = R_2 R_1 T_2,$ 

### Realisation



where the translations  $T_1$ ,  $T_2$  and the rotations  $R_1$ ,  $R_2$  are given by

$$\begin{split} T_1 &= 1 - \frac{1}{2} l_1 e_2 \wedge e_{\infty}, \\ T_2 &= 1 - \frac{1}{2} l_2 e_1 \wedge e_{\infty}, \\ R_1 &= \cos(\frac{\phi_1}{2}) + \sin(\frac{\phi_1}{2})(e_3 \wedge e_1), \\ R_2 &= \cos(\frac{\phi_2}{2}) + \sin(\frac{\phi_2}{2})\ell_2 \end{split}$$

and where the axis  $\ell_2$  of the second rotation is

$$\ell_2 = R_1(e_2 \wedge e_3)\tilde{R}_1.$$



Geometric algebra of Euclidean space

#### 2 Binocular vision





## ABB manipulator



 $J_i$ ,  $i = 0, \cdots, 4$  joints  $P = j_4 + v$  orientation  $L_3^* = J_4 \wedge P \wedge e_\infty$ . At first we compute  $J_3$  with help of the intersection of the line  $L_3$  and a sphere with center  $J_4$  and radius  $I_{34}$ 

$$S_3 = \bar{J}_4 - \frac{1}{2}l_{34}^2 e_\infty.$$

The intersection denotes the point pair  $Pp_3$  and the corresponding point  $J_3$  with respect to the orientation of the gripper is extracted:

$$ar{J}_3 = ar{S}_3 \wedge L_3, \ -\sqrt{P p_3^* \cdot P p_3^*} + P p_3^* \ -e_\infty \cdot P p_3^*$$



## Two link arm







Geometric algebra of Euclidean space

#### Binocular vision

3 Inverse kinematics



## Robotic snake



$$p_{i}(q) = M_{i}p_{i}(0)\tilde{M}_{i}, M_{0} = T_{0}e^{-\theta(e_{1}\wedge e_{2})}\tilde{T}_{0}, T_{0} := 1 - \frac{1}{2}(xe_{1} + ye_{2})e_{\infty},$$
  

$$\mathbf{M}_{i} = M_{i}...M_{1}M_{0}T_{0} \text{ for } i > 0,$$
  

$$M_{i+1} = T_{i}e^{-\Phi_{i}(e_{1}\wedge e_{2})}\tilde{T}_{i}, T_{i} = e^{-(L_{i}-e_{0})\wedge e_{\infty}}, L_{i} = \mathbf{M}_{i}L_{i}(0)\tilde{\mathbf{M}}_{i},$$
  

$$Q_{i} = \mathbf{M}_{i}Q_{i}(0)\tilde{\mathbf{M}}_{i}.$$
(3)

Jaroslav Hrdina (Brno University of TechnoClifford algebras and engineering applications



Thank you for your attention Happy Birthday Dmitri Všechno nejlepší Dmitri