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I. Quaternionic Kähler manifolds

Reminder
A Kähler manifold is a Riemannian manifold (M, g) endowed with
a parallel, skew-symmetric (almost) complex structure J.

Definition
A quaternionic Kähler manifold (M, g ,Q) of dimension > 4 is a
Riemannian manifold (M, g) of dimension > 4 endowed with a
parallel, skew-symmetric (almost) quaternionic structure Q.

In terms of holonomy:

Kähler ⇐⇒ Hol ⊂ U(n).
Quaternionic Kähler dim > 4 ⇐⇒ Hol ⊂ Sp(n)Sp(1), n > 1.

Simplest examples

CPn has Hol = U(n).
HPn has Hol = Sp(n)Sp(1).
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Wolf and Alekseevsky spaces

Theorem (Berger ‘55, Alekseevsky ‘68)

Let (M, g) be a simply connected non locally symmetric
Riemannian manifold with irreducible holonomy group. Then

Hol ∈ {SO(n), U(n), Sp(n)Sp(1), SU(n), Sp(n), G2, Spin(7)︸ ︷︷ ︸
=⇒ Einstein

}.

Symmetric QK manifolds

1. Those of compact type (Wolf spaces) are in natural bijection
with the complex simple Lie algebras (Wolf ‘68).

2. The noncompact duals of the Wolf spaces are also QK.

Alekseevsky ‘75

Classified QK manifolds with a simply transitive completely
solvable group of isometries (Alekseevsky spaces) and found the
first non locally symmetric QK manifolds. 3 / 20



State of the art

Open problem

No compact, non locally symmetric quaternionic Kähler manifold
of scal 6= 0 known.

Compare: for all the other groups of Einstein type from Berger’s
list, compact examples have been constructed by Yau ‘78 (SU(n)),
Beauville ‘83 (Sp(n)), and Joyce ‘94 (G2, Spin(7)).

LeBrun-Salamon Conjecture ‘94

A complete quaternionic Kähler manifold of scal > 0 is a Wolf
space.

Evidence

1. True for dimM ≤ 16 (Hitchin ‘81, Friedrich-Kurke ‘82,
Poon-Salamon ‘91, Buczyński-Wísniewski-Weber ‘20).

2. Finiteness theorem (LeBrun-Salamon ‘94).

3. 6 ∃ positive QK manifolds of cohomogeneity one
(Dancer-Swann ‘99, Podestà-Verdiani ‘00). 4 / 20



State of the art continued

Bagger-Witten ‘83

Quaternionic Kähler manifolds of scal < 0 are related to
supergravity.

Consequences

This fact has lead to a number of physics inspired constructions:

1. r-map (de Wit-Van Proeyen ‘92)

2. c-map (Ferrara-Sabharwal ‘90)

3. quantum corrections in string theory:

3.1 perturbative (Robles-Llana-Saueressig-Vandoren ‘06)
3.2 instanton corrections (see Alexandrov-Manschot-Persson-

Pioline arXiv:1304.0766 for a survey)

Plan for this talk
... explain how to obtain complete QK manifolds, including
cohomogeneity one examples.
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II. The q-map

Fact
The q-map, i.e. r-map followed by c-map, is a construction which
associates a quaternionic Kähler manifold with every projective
special real manifold.

Definition
A projective special real (PSR) manifold is a hypersurface H ⊂ Rn

s.t. ∃ homog. cubic polynomial h on Rn s.t.

i) h = 1 on H and

ii) ∂2h is negative definite on TH.

Then ι : H ↪→ Rn is endowed with the Riemannian metric

gH = −1

3
ι∗∂2h.
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The q-map: some global results

Theorem (C.-Han-Mohaupt ‘12)

The q-map preserves completeness.

Theorem (C.-Nardman-Suhr ‘16)

A PSR manifold H ⊂ {h = 1} ⊂ Rn is complete iff H ⊂ Rn is
closed.

Corollary (C.-Nardman-Suhr ‘16)

Let H be a locally strictly convex component of the level set
{h = 1} of a homogeneous cubic polynomial h on Rn. Then H

determines a complete QK manifold diffeomorphic to R4n+4.
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III. Automorphisms

Proposition (r-map)

Let H ⊂ Rn be a projective special real manifold and M̄ the
corresponding projective special Kähler (PSK) domain.
The action of Aut(H) extends to an action of AffH(Rn) :=
(R>0 ×Aut(H)) nRn on M̄ by automorphisms.

Proof (sketch)

As a Kähler manifold M̄ can be described as follows.

I Complex structure:

M̄ = U × Rn = Rn + iU ⊂ Cn,

where U = R>0 ·H ⊂ Rn.

I Metric: gM̄ = 3
4

∑
gab(dxadxb + dyadyb), where

gU = −1

3
∂2 log h =

∑
gabdx

adxb.
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Automorphisms: r-map continued

Proof continued
The fact that M̄ is a PSK domain means that ∃ holomorphic
function F : MF → C homog. of deg. 2 on C∗-invariant domain
MF ⊂ Cn+1 \ {0} s.t. M̄ can be realised as the image of the
Lagrangian cone M := im(dF : MF → T ∗Cn+1 = V ) under the
projection π : V \ {0} → P(V ), V = (C2n+2,Ω =

∑
dz j ∧ dwj)

with the metric induced by gV = Re(iΩ(·, ·̄)).

In fact, here F = h(z1,...,zn)
z0 , MF = {z0 · (1, p) | p ∈ M̄, z0 ∈ C∗},

M̄ ⊂ Cn ⊂ CPn is identified with P(MF ) ⊂ CPn and P(MF ) with
P(M) ⊂ P(V ) = CP2n+1. So M̄ ∼= P(M) is a PSK domain.

Now we can construct embedding
ϕh : AffH(Rn)→ Aut(M) ⊂ Sp(R2n+2) (inducing embedding into
Aut(M̄)) as follows ...
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Automorphisms: r-map continued

1. Restriction of ϕh to Aut(H) ⊂ AffH (Rn) defined by

Aut(H) ⊂ GL(n,R) ⊂ GL(n + 1,R) ⊂ Sp
(
R2n+2

)
.

2. Restriction to R>0 given by

R>0 3 λ 7→ diag(λ−
3
2 , λ−

1
21) ∈ GL(n + 1,R) ⊂ Sp

(
R2n+2

)
.

3. ϕh|Rn : Rn → Sp
(
R2n+2

)
given by

ϕh(v) =


1 0 0 0

v 1 0 0

−H(v , v , v) −3H(v , v , ·) 1 −v t
3H(v , v , ·)t 6Hv 0 1

 ,

H ∈ S3 (Rn)∗ defined by H(v , v , v) = h(v), v ∈ Rn, and
Hv : Rn → Rn, z 7→ H(v , z , ·)t .
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Automorphisms: c-map

Proposition (c-map)

Let M → M̄ be a conical affine special Kähler domain and
(N̄ = M̄ × G , gN̄) the corresponding QK manifold. The action of
Aut(M) on M̄ extends to an action of

Aut(M) n G ⊂ Sp(R2n+2) n G

on N̄ by isometries. Here G = Iwa(SU(1, n + 2)).
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Automorphisms: q-map

Theorem (q-map) [C.-Dyckmanns-Jüngling-Lindemann ‘20]

If Aut(H) acts with cohomogeneity k ∈ N0 on H, then

IsomH(N̄) := ϕh(AffH(Rn)) n G ⊂ Aut(M) n G ⊂ Isom(N̄)

acts with cohomogeneity k on N̄ and Isom(N̄) with cohomogeneity
≤ k on N̄. In particular we always have

coh(Isom(N̄)) ≤ dimH =
dim N̄

4
− 2.
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IV. A series of cohomogeneity 1 examples

Theorem [CDJL]

Consider h(x) = x1(x2
1 −

∑n
i=2 x

2
i ), n ≥ 2. Then

H = {h(x) = 1, x1 > 0} ⊂ Rn is a complete PSR manifold and
the corresponding complete quaternionic Kähler manifold N̄ is of
cohomogeneity one.

Remark:
In this case, IsomH(N̄) = ((R>0 ×O(n − 1)) nRn) nϕh

G .
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V. HK/QK-correspondence and 1-loop deformation

Facts

1. ∃ extension of Haydy’s HK/QK-correspondence for indefinite
HK manifolds, which applies to the manifolds N obtained by
the HK-version of the c-map and yields a family of QK
metrics g c

N̄
[Alekseevsky-C.–Mohaupt ‘13].

2. The metric g0
N̄

coincides with gN̄ obtained by the c-map

[Alekseevsky-C.–Dyckmanns-Mohaupt ‘15]: M

C∗
��

c // N_

HK/QK
��

M̄
c̄ // N̄

3. This yields a geometric proof that the manifold (N̄, gN̄) and a
1-parameter deformation thereof is QK.

4. The deformed QK manifold (N̄, g c
N̄

), c > 0, is complete if the

initial PSK manifold M̄ is complete and of regular boundary
behavior or in the image of the r-map [C.-Dyckmanns-Suhr ‘17].
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VI. Cohomogeneity 1 by 1-loop deformation of
homogeneous spaces

Theorem 1 (C.-Saha-Thung arXiv:2001.10026)

Let N be a possibly indefinite HK manifold and fZ a function
which satisfies the assumptions of the HK/QK-correspondence.
Then there is a central extension of aut(N, fZ ) which acts by
Killing vector fields on (N̄, g c

N̄
).

Theorem 2 (C.-Saha-Thung 2001.10026)

Let M̄ be a homogeneous PSK domain of dimension 2n. Then the
complete QK manifold (N̄, g c

N̄
), c > 0, obtained by 1-loop deforma-

tion of the c-map manifold (N̄, g0
N̄

), is of cohomogeneity ≤ 1.

Remark
Above manifolds (N̄, g0

N̄
) exhaust all known examples of

homogeneous QK manifolds of scal < 0 with exception of HHn.

15 / 20



Cohomogeneity 1 by 1-loop deformation of homogeneous
spaces

Conjecture

The 1-loop deformation of a homogeneous QK manifold is always
of cohomogeneity 1.

Theorem 3 (C.-Saha-Thung 2001.10032)

Applying the above construction to M̄ = CHn we obtain a
deformation (N̄, g c

N̄
), c > 0, of the symmetric QK manifold

(N̄, g0
N̄

) =
SU(2, n + 1)

S(U(2)×U(n + 1))

by complete QK manifolds of cohomogeneity 1.

Theorem 4 (follows from Theorem 2 and [CDS])

The 1-loop deformation of the symmetric QK manifold
G2(2)/SO(4) is of cohomogeneity 1.
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VII. How to prove cohomogeneity 1

Cohomogeneity ≤ 1

1. Infinitesimal automorphisms of CASK manifold M lift to
automorphism of (N = T ∗M, fZ ), where N is endowed with
the semi-flat HK structure and Z is the ∇-horizontal lift of Jξ.

2. Applying Theorem 1 we show that 1-loop deformation
(N̄, g c

N̄
), c > 0 of c-map manifold N̄ associated with M̄

admits a group of isometries inducing the transitive action on
base of N̄ = M̄ × G → M̄.

3. On the other hand there is always Heis2n+3 ⊂ G acting freely
by isometries and transversally to the above action.

4. This yields an isometric cohomogeneity one action of
Aut(M̄) n Heis2n+3 on (N̄, g c

N̄
), c > 0.

Cohomogeneity ≥ 1

For this we prove a general structure result for curvature tensor
under HK/QK-correspondence and specialize it to above series. 17 / 20



VIII. Curvature tensor under HK/QK-correspondence

I Let (N, gN , fZ ) be input data for the HK/QK-correspondence
and (N̄, g c

N̄
) the resulting family of QK manifolds.

I The metrics are conveniently related , by a double fibration

N ←− (P, η) −→ N̄ [ACDM].

I Using the terminology of [Maćıa and Swann ‘15], g c
N̄

is
η-related to an elementary deformation

gH =
1

fZ
gN +

1

f 2
Z

((ιZgN)2 +
3∑

k=1

(ιZωk)2)

=
1

fZ
gN |(HZ)⊥ +

fH
f 2
Z

gN |HZ .

of gN , where fH = fZ + gN(Z ,Z ).
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Curvature tensor under HK/QK-correspondence

Theorem ([CST 2001.10032])

The curvature (4, 0)-tensor Rc of the QK metric g c
N̄

is η-related to
the tensor

1

fZ
R +

1

8

(
gH ? gH +

3∑
k=1

gH(Ik ·, ·) : gH(Ik ·, ·)

)

− 1

8fZ fH

(
ωH : ωH +

3∑
k=1

ωH(Ik ·, ·) ? ωH(Ik ·, ·)

)
,

where R denotes the curvature (4, 0)-tensor of the HK metric gN ,
I0 = Id, ωH = dη, ? : (T ∗N)⊗4 → (∧2T ∗N)⊗2 is the (extended)
Kulkarni-Nomizu product and : : (∧2T ∗N)⊗2 → (∧2T ∗N)⊗2 is
defined by
α⊗ β: γ ⊗ δ := α⊗ β? γ ⊗ δ+ 2α⊗ β⊗ γ ⊗ δ+ 2γ ⊗ δ⊗α⊗ β.

Specializing to the above series of symmetric spaces

... we prove that |Rc |2 is a non-constant function of fZ/fH if c 6= 0.
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IX. Explicit form of the 1-loop deformed c-map metric

g c
FS =

φ+ c

φ
gM̄ +

1

4φ2

φ+ 2c

φ+ c
dφ2

+
1

4φ2

φ+ c

φ+ 2c
(d φ̃+

∑
(ζ jd ζ̃j − ζ̃jdζ j) + ic(∂̄ − ∂)K)2

+
1

2φ
gpr
G +

2c

φ2
eK
∣∣∣∑(X jd ζ̃j + Fj(X )dζ j)

∣∣∣2 ,
where (φ, φ̃, ζ0, . . . , ζn, ζ̃0, . . . , ζ̃n) : G → R>0 × R2n+3 ∼= R2n+4 is
a global coord. system on G , c ∈ R, X j = z j/z0,
K = − log

(∑
X iNij X̄

j
)
, Nij = 2ImFij and

gpr
G =

∑
Iij(p)dζ idζ j

+
∑

Iij(p)
(
d ζ̃i +

∑
Rik(p)dζk

)(
d ζ̃j +

∑
Rj`(p)dζ`

)
,

where Rij , Iij are real and imaginary parts of

F̄ij +
√
−1

∑
Nikz

k
∑

Nj`z
`∑

Nk`zkz`
.
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